15.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,則$\frac{y}{x}$的取值范圍為[1,+∞).

分析 畫出約束條件表示的可行域,說明$\frac{y}{x}$的幾何意義,利用數(shù)形結(jié)合求解$\frac{y}{x}$的范圍.

解答 解:約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,表示的可行域如圖
由$\left\{\begin{array}{l}{2x+y=3}\\{x+2y=3}\end{array}\right.$解得C(1,1);
結(jié)合函數(shù)的圖形可知,$\frac{y}{x}$的幾何意義是可行域內(nèi)的點(diǎn)與坐標(biāo)運(yùn)算連線的斜率,在C點(diǎn)取得最小值,$\frac{y}{x}$=1.
所以$\frac{y}{x}$的范圍是[1,+∞).
故答案為:[1,+∞).

點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃的應(yīng)用,正確畫出約束條件的可行域是解題的關(guān)鍵,?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和公式是${S_n}={3^n}-1$,
(1)求{an}的通項(xiàng)公式;
(2)證明{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+asinx.
(Ⅰ) 若函數(shù)f(x)在$x=\frac{2π}{3}$處有極值,求f(x)在[0,π]上的最小值;
(Ⅱ)若f(x)在(-∞,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)y=f(x)在R內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函數(shù)f(x)=2-|x|.當(dāng)K=$\frac{1}{2}$時(shí),函數(shù)fK(x)的單調(diào)遞減區(qū)間為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表:
年份20102011201220132014
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(Ⅰ)求y關(guān)于t的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+$\stackrel{∧}{a}$
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$.$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極大值-3,則ab等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)x,y為實(shí)數(shù),且$\frac{x}{1-i}$+$\frac{y}{1-2i}$=$\frac{5}{1-3i}$,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.3名教練員隨機(jī)從3男3女共6名運(yùn)動(dòng)員中各帶2名參加乒乓球比賽,3名教練員恰好都能把運(yùn)動(dòng)員組成混雙的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F1(-4,0),F(xiàn)2(4,0),點(diǎn)M為OF2:(x-4)2+y2=100上任意一點(diǎn),F(xiàn)1M的垂直平分線交MF2于點(diǎn)P.
(1)求P點(diǎn)的軌跡方程;
(2)設(shè)P到F1、F2的距離分別為d1、d2,求2d12+d22的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案