有7名奧運(yùn)會志愿者,其中志愿者通曉日語,通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求被選中的概率;(5分);(2)求不全被選中的概率.(5分)

(1);(2)

解析試題分析:首先判斷出本題屬于古典概型問題,利用列舉法列出所有基本事件的可能結(jié)果,再列出事件A所包含的結(jié)果,利用古典概型公式解。利用列舉法求基本事件,要注意按照一定順序,務(wù)必做到不重不漏.
試題解析:(1)從7人中選出通曉日語、俄語和韓語的志愿者各1名,其所有可能結(jié)果組成的基本事件空間,,,,,,,,,},由12各基本事件組成,由于每個基本事件被抽取的機(jī)會均等,這些基本事件的發(fā)生時等可能的.
表示“被抽中”這一事件,
,,,},事件由4個基本事件組成,因而 . (5分)
(2)用表示“不全被選中”這一事件,則其對立事件表示“ 全被選中”這一事件,
由于={, , },事件由3各基本事件組成,因而,
由對立事件的概率公式得 . (10分)
考點:古典概型、對立事件概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了參加廣州亞運(yùn)會,從四支較強(qiáng)的排球隊中選出18人組成女子排球國家隊,隊員來源人數(shù)如下表:

對別
北京
上海
天津
八一
人數(shù)
4
6
3
5
(Ⅰ)從這18名隊員中隨機(jī)選出兩名,求兩人來自同一隊的概率;
(Ⅱ)中國女排奮力拼搏,戰(zhàn)勝了韓國隊獲得冠軍,若要求選出兩位隊員代表發(fā)言,設(shè)其中來自北京隊的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示,椐統(tǒng)計,隨機(jī)變量的概率分布如下:


0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分為,,,,五個等級.現(xiàn)從一批該產(chǎn)品隨機(jī)抽取20個,對其等級進(jìn)行統(tǒng)計分析,得到頻率分布表如下:

等級





頻率





(1)在抽取的20個產(chǎn)品中,等級為5的恰有2個,求,;
(2)在(1)的條件下,從等級為3和5的所有產(chǎn)品中,任意抽取2個,求抽取的2個產(chǎn)品等級恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某品牌汽車的4店,對最近100位采用分期付款的購車者進(jìn)行了統(tǒng)計,統(tǒng)計結(jié)果如下表所示:已知分3期付款的頻率為0.2,且4店經(jīng)銷一輛該品牌的汽車,顧客若一次付款,其利潤為1萬元;若分2期付款或3期付款,其利潤為1.5萬元;若分4期付款或5期付款,其利潤為2萬元.用表示經(jīng)銷一輛該品牌汽車的利潤.

付款方式
一次
分2期
分3期
分4期
分5期
頻數(shù)
40
20
a
10
b
(1)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有1位采用分3期付款”的概率
(2)求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某旅游公司提供甲、乙、丙三處旅游景點,游客選擇游玩哪個景點互不影響,已知某游客選擇游甲地而不選擇游乙地和丙地的概率為0.08,選擇游甲地和乙地而不選擇游丙地的概率為0.12,在甲、乙、丙三處旅游景點中至少選擇游一個景點0.88,用表示游客在甲、乙、丙三處旅游景點中選擇游玩的景點數(shù)和沒有選擇游玩的景點數(shù)的乘積.
(Ⅰ)記“函數(shù)是R上的偶函數(shù)”為事件A,求事件A的概率;
(Ⅱ)求的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較“傳統(tǒng)式教學(xué)法”與我校所創(chuàng)立的“三步式教學(xué)法”的教學(xué)效果.共選100名學(xué)生隨機(jī)分成兩個班,每班50名學(xué)生,其中一班采取“傳統(tǒng)式教學(xué)法”,二班實行“三步式教學(xué)法”
(Ⅰ)若全校共有學(xué)生2000名,其中男生1100名,現(xiàn)抽取100名學(xué)生對兩種教學(xué)方式的受歡迎程度進(jìn)行問卷調(diào)查,應(yīng)抽取多少名女生?
(Ⅱ)下表1,2分別為實行“傳統(tǒng)式教學(xué)”與“三步式教學(xué)”后的數(shù)學(xué)成績:
表1

數(shù)學(xué)成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
15
20
10
5
表2
數(shù)學(xué)成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
5
40
3
2
完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為這兩種教學(xué)法有差異.
班  次
120分以下(人數(shù))
120分以上(人數(shù))
合計(人數(shù))
一班
 
 
 
二班
 
 
 
合計
 
 
 
參考公式:,其中
參考數(shù)據(jù):
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.
(1)試用上述樣本數(shù)據(jù)估計甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(2)從乙廠抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;
(3)從甲廠的10件樣品中有放回的隨機(jī)抽取3件,也從乙廠的10件樣品中有放回的隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為,求的概率.

查看答案和解析>>

同步練習(xí)冊答案