【題目】已知拋物線的焦點(diǎn)為,拋物線的焦點(diǎn)為.

(1)若過點(diǎn)的直線與拋物線有且只有一個(gè)交點(diǎn),求直線的方程;

(2)若直線與拋物線交于兩點(diǎn),求的面積.

【答案】(1)x=0或y=1或y=x+1;(2) .

【解析】試題分析:

1)求出,分類討論,直線與拋物線方程聯(lián)立,即可求解直線的方程;

2)直線與拋物線聯(lián)立,利用韋達(dá)定理,根據(jù)的面積,即可求解的面積

試題解析:

(1)∵拋物線C:y2=2px(p>0)的焦點(diǎn)為F(1,0),拋物線E:x2=2py的焦點(diǎn)為M,

∴p=2,M(0,1)

斜率不存在時(shí),x=0,滿足題意;

斜率存在時(shí),設(shè)方程為y=kx+1,代入y2=4x,可得k2x2+(2k﹣4)x+1=0,

k=0時(shí),x=,滿足題意,方程為y=1;

k≠0時(shí),△=(2k﹣4)2﹣4k2=0,∴k=1,方程為y=x+1,

綜上,直線l的方程為x=0或y=1或y=x+1;

(2)直線MF的方程為y=﹣x+1,代入y2=4x,可得y2+4y﹣4=0,

設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣4,y1y2=﹣4,

∴△OAB的面積S=|OF||y1﹣y2|==2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過點(diǎn)M的直線與拋物線交于A,B兩點(diǎn),設(shè)A(x1 , y1)到準(zhǔn)線l的距離d=2λp(λ>0)

(1)若y1=d=3,求拋物線的標(biāo)準(zhǔn)方程;
(2)若 = ,求證:直線AB的斜率的平方為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面;

(2)若過直線的一個(gè)平面與線段分別相交于點(diǎn) (點(diǎn)與點(diǎn)均不重合),求證:

(3)判斷線段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱臺(tái)ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點(diǎn),
(Ⅰ)λ為何值時(shí),MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=e2x+ln(x+a).
(1)當(dāng)a=1時(shí),①求f(x)在(0,1)處的切線方程;②當(dāng)x≥0時(shí),求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中 為原點(diǎn), 為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某物流公司進(jìn)行倉儲(chǔ)機(jī)器人升級(jí)換代期間,第一年有機(jī)器人臺(tái),平均每臺(tái)機(jī)器人創(chuàng)收利潤萬元預(yù)測(cè)以后每年平均每臺(tái)機(jī)器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機(jī)器人數(shù)量每年都比上一年減少

(1)設(shè)第年平均每臺(tái)機(jī)器人創(chuàng)收利潤為萬元,在用機(jī)器人數(shù)量為臺(tái),求,的表達(dá)式;

(2)依上述預(yù)測(cè),第幾年該物流公司在用機(jī)器人創(chuàng)收的利潤最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案