分析 f($\frac{3π}{4}$)=f($\frac{11π}{12}$)求出函數(shù)的一條對(duì)稱軸,結(jié)合f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上具有單調(diào)性,且f($\frac{3π}{4}$)=-f($\frac{π}{4}$).可得函數(shù)的一個(gè)對(duì)稱中心,利用對(duì)稱中心與對(duì)稱軸距離的最小值為$\frac{1}{4}$周期,則周期可求
解答 解:由f($\frac{3π}{4}$)=f($\frac{11π}{12}$)可知函數(shù)f(x)的一條對(duì)稱軸為x=$\frac{\frac{3π}{4}+\frac{11π}{12}}{2}$=$\frac{5π}{6}$,
又f($\frac{3π}{4}$)=-f($\frac{π}{4}$),則f(x)有對(duì)稱中心($\frac{π}{2}$,0),
由于f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上具有單調(diào)性,
則$\frac{3π}{4}-\frac{π}{4}$≤$\frac{1}{2}$T所以T≥π,從而T=4($\frac{5π}{6}-\frac{π}{2}$)=$\frac{4π}{3}$.
故答案為:$\frac{4π}{3}$.
點(diǎn)評(píng) 本題考查f(x)=Asin(ωx+φ)型圖象的形狀,考查了學(xué)生靈活處理問題和解決問題的能力,是中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{17}$ | D. | $\frac{1}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{3}{5}$+$\frac{4}{5}$i | D. | $\frac{3}{5}$-$\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -7 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,$\frac{5}{2}$] | B. | [$\frac{1}{2}$,$\frac{3}{2}$] | C. | (0,$\frac{1}{2}$] | D. | [$\frac{2}{5}$,$\frac{1}{2}$] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com