4.已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e${\;}^{\frac{x}{2}}$的解集是(  )
A.(ln2,+∞)B.(2ln2,+∞)C.(-∞,ln2)D.(-∞,2ln2)

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,利用導(dǎo)數(shù)可判斷g(x)的單調(diào)性,再根據(jù)f(ln4)=2,求得g(ln4)=1,繼而求出答案.

解答 解:∵?x∈R,都有2f′(x)>f(x)成立,
∴f′(x)-$\frac{1}{2}$f(x)>0,于是有($\frac{f(x)}{{e}^{\frac{x}{2}}}$)′>0,
令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,則有g(shù)(x)在R上單調(diào)遞增,
∵不等式f(x)>${e}^{\frac{x}{2}}$,
∴g(x)>1,
∵f(ln4)=2,
∴g(ln4)=1,
∴x>ln4=2ln2,
故選:B.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)算及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬中檔題,解決本題的關(guān)鍵是根據(jù)選項(xiàng)及已知條件合理構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{x}{\sqrt{1-{x}^{2}}}$的導(dǎo)函數(shù)為$\frac{\sqrt{1-{x}^{2}}}{(1-{x}^{2})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn是公差不為0 的等差數(shù)列{an}的前n 項(xiàng)和,S1,S2,S4成等比數(shù)列,且${a_3}=-\frac{5}{2}$,則數(shù)列$\left\{{\frac{1}{{(2n+1){a_n}}}}\right\}$的前n 項(xiàng)和Tn=( 。
A.-$\frac{n}{2n+1}$B.$\frac{n}{2n+1}$C.-$\frac{2n}{2n+1}$D.$\frac{2n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=lnx-f′(-1)x2+3x-4,則f′($\frac{1}{2}$)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{a(x-1)}$(a≠0),且f(0)=1,若函數(shù)f(x)在(m,m+$\frac{1}{2}$)上單調(diào)遞增,則m的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{3}$x3-2x的單調(diào)遞增區(qū)間為(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知“p∧q”是假命題,則下列選項(xiàng)中一定為真命題的是( 。
A.p∨qB.(¬p)∧(¬q)C.(¬p)∨qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.使不等式$tanx-\sqrt{3}≤0$成立的x的取值集合為{x|-$\frac{π}{2}$+kπ<x≤$\frac{π}{3}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=f(x),將f(x)圖象沿x軸向右平移$\frac{π}{4}$個單位,然后把所得到圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)擴(kuò)大到原來的2倍,這樣得到的曲線與y=2sin(x-$\frac{π}{3}$)的圖象相同,那么y=f(x)的解析式為( 。
A.f(x)=2sin(2x-$\frac{5π}{6}$)B.f(x)=2sin(2x-$\frac{π}{6}$)C.f(x)=2sin(2x+$\frac{5π}{6}$)D.f(x)=2sin(2x+$\frac{π}{6}$)

查看答案和解析>>

同步練習(xí)冊答案