【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),且.

(1)求拋物線的方程;

(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線兩點(diǎn),求取最小值時(shí)直線的方程.

【答案】(1);(2.

【解析】

1)直曲聯(lián)立表示出拋物線弦長(zhǎng),得到關(guān)于的方程,求出,得到拋物線的方程.

2)直線與拋物線聯(lián)立,得到、,再根據(jù)題意,得到點(diǎn)和點(diǎn)的坐標(biāo),用表示出,代入、的關(guān)系,得到函數(shù),求出最小值.從而得到直線的方程.

(1),直線的方程為,

,聯(lián)立,

,,

,

拋物線的方程為:.

(2)設(shè),,直線的方程為:,

聯(lián)立方程組消元得:,

,.

.

設(shè)直線的方程為,

聯(lián)立方程組解得,

,∴.

同理得.

.

,則.

.

∴當(dāng)時(shí),取得最小值.

此時(shí)直線的方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求點(diǎn)M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,我國(guó)經(jīng)濟(jì)持續(xù)高速增長(zhǎng)如圖給出了我國(guó)2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值以下簡(jiǎn)稱為:產(chǎn)業(yè)差值的折線圖,記產(chǎn)業(yè)差值為單位:萬億元

求出y關(guān)于年份代碼t的線性回歸方程;

利用中的回歸方程,分析2003年至2012年我國(guó)產(chǎn)業(yè)差值的變化情況,并預(yù)測(cè)我國(guó)產(chǎn)業(yè)差值在哪一年約為34萬億元;

結(jié)合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差結(jié)果精確到

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

樣本方差公式:

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn)過點(diǎn)的直線交拋物線于另一點(diǎn),軸的正半軸于點(diǎn)且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

(1)求拋物線的方程

(2)若直線,和拋物線有且只有一個(gè)公共點(diǎn),試問直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在由數(shù)字1,2,34,5組成的所有沒有重復(fù)數(shù)字的四位數(shù)中,大于3145且小于4231的數(shù)共有(

A.27個(gè)B.28個(gè)C.29個(gè)D.30個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓,拋物線,過上一點(diǎn)異于原點(diǎn)的切線lA,B兩點(diǎn),切線lx軸于點(diǎn)Q

若點(diǎn)P的橫坐標(biāo)為1,且,求p的值.

的面積的最大值,并求證當(dāng)面積取最大值時(shí),對(duì)任意的,直線l均與一個(gè)定橢圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某!傲柙票被@球隊(duì)的成員來自學(xué)校高一、高二共10個(gè)班的12位同學(xué),其中高一(3)班、高二(3)各出2人,其余班級(jí)各出1人,這12人中要選6人為主力隊(duì)員,則這6人來自不同的班級(jí)的概率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,平面底面ABC,四邊形是正方形,,Q是的中點(diǎn),且,

求證:平面

求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案