13.有一種細菌A,每小時分裂一次,分裂時每個細菌都分裂為2個,現(xiàn)有某種飲料200毫升,其中細菌A的濃度為20個/毫升:
(1)試講飲料中的細菌A的個數(shù)y表示成經(jīng)過的小時數(shù)x的函數(shù);
(2)若飲料中細菌A的總數(shù)超過9萬個,將對人體有害,那么幾個小時后該飲料將對人體有害?(精確到0.1小時).

分析 (1)求出最初的細菌個數(shù),列出函數(shù)解析式即可;(2)根據(jù)題意得到關于x的不等式,解出即可.

解答 解:(1)某種飲料200毫升,其中細菌A的濃度為20個/毫升:
故200毫升飲料有細菌A4000個,
故細菌A的個數(shù)y=4000•2x,x>0;
(2)由(1)得:
4000×2x>90000,
解得:x>4.49,
即4.5小時后該飲料將對人體有害.

點評 本題考查了求函數(shù)解析式問題,考查不等式的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C的一個焦點F1($\sqrt{3}$,0),短軸的長為2,雙曲線D以橢圓C的焦點為焦點,實軸長與橢圓C的短軸長相等.
(1)求橢圓C的方程;
(2)求雙曲線D的方程;
(3)求橢圓C與雙曲線D相交所得的矩形面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知正四棱錐P-ABCD的底面邊長為$\sqrt{2}$,體積為$\frac{4}{3}$,則此棱錐的內(nèi)切球與外接球的半徑之比為(  )
A.1:2B.2:5C.1:3D.4:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.給出30個數(shù):1,2,4,7,…其規(guī)律是:第一個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,以此類推,要計算這30個數(shù)的和,現(xiàn)已給出了該問題算法的程序框圖(如圖所示),
(1)請在圖中判斷框內(nèi)①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能;
(2)根據(jù)程序框圖寫出程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.對于大于或等于2的自然數(shù),有如下分解式:
22=1+3
32=1+3+5
42=1+3+5+7
23=3+5
33=7+9+11
43=13+15+17+19
根據(jù)上述分解規(guī)律,若n2=1+3+5+…+19,m3的分解中最小的數(shù)是43,則m+n=17.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知$f(x)=\frac{x}{1+x},x≥0$,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,歸納猜想f2018(x)的表達式為f2018(x)=$\frac{x}{1+2018x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一質(zhì)點直線運動的方程為s=t2+1,則在時間[1,2]內(nèi)的平均速度為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在三棱錐P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分別為BC,AB中點.
(I)求證:MN∥平面PAC;
(II)求證:平面PBC⊥平面PAM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,左右焦點分別為F1,F(xiàn)2,經(jīng)過F2作一條斜率為-1的直線,與橢圓相交于A,B兩點,且△ABF1的周長為8;
(1)求橢圓的方程;
(2)求線段AB的長.

查看答案和解析>>

同步練習冊答案