2.在三棱錐P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分別為BC,AB中點(diǎn).
(I)求證:MN∥平面PAC;
(II)求證:平面PBC⊥平面PAM.

分析 ( I)由M、N分別為BC,AB中點(diǎn),可得MN∥AC.即可證明MN∥平面PAC.
( II)只需證明PA⊥BC.MN⊥BC,即可證明BC⊥平面PAM.即平面PBC⊥平面PAM.

解答 證明:( I)因?yàn)镸、N分別為BC,AB中點(diǎn),
所以MN∥AC.
因?yàn)镸N?平面PAC,AC?平面PAC,
所以MN∥平面PAC.
( II)因?yàn)镻A⊥平面ABC,BC?平面ABC,
所以PA⊥BC.
因?yàn)锳B=AC=2,M為BC的中點(diǎn),
所以MN⊥BC.
因?yàn)锳M∩PA=A,
所以BC⊥平面PAM.
因?yàn)锽C?平面PBC,
所以平面PBC⊥平面PAM.

點(diǎn)評(píng) 本題考查了空間線(xiàn)面平行、面面垂直的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知球的直徑PC=4,A,B在球面上,AB=2,∠CPA=∠CPB=45°,則棱錐P-ABC的體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.有一種細(xì)菌A,每小時(shí)分裂一次,分裂時(shí)每個(gè)細(xì)菌都分裂為2個(gè),現(xiàn)有某種飲料200毫升,其中細(xì)菌A的濃度為20個(gè)/毫升:
(1)試講飲料中的細(xì)菌A的個(gè)數(shù)y表示成經(jīng)過(guò)的小時(shí)數(shù)x的函數(shù);
(2)若飲料中細(xì)菌A的總數(shù)超過(guò)9萬(wàn)個(gè),將對(duì)人體有害,那么幾個(gè)小時(shí)后該飲料將對(duì)人體有害?(精確到0.1小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)α=-300°,則與α終邊相同的角的集合為( 。
A.{α|α=k•360°+300°,k∈Z}B.{α|α=k•360°+60°,k∈Z}
C.{α|α=k•360°+30°,k∈Z}D.{α|α=k•360°-60°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)已知$\frac{sinα+3cosα}{3cosα-sinα}$=5,求sin2α-sinαcosα的值.
(2)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,周期為$\frac{π}{2}$的偶函數(shù)為(  )
A.y=sin4xB.y=cos2xC.y=tan2xD.$y=sin(\frac{π}{2}-4x)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=|lgx|-cosx在(-∞,+∞)內(nèi)的零點(diǎn)個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求函數(shù)f(x)=x(ex-1)-$\frac{1}{2}$x2的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若f(x)=e-x(cos x+sin x),則f′(x)=-2e-xsinx.

查看答案和解析>>

同步練習(xí)冊(cè)答案