分析 ( I)由M、N分別為BC,AB中點(diǎn),可得MN∥AC.即可證明MN∥平面PAC.
( II)只需證明PA⊥BC.MN⊥BC,即可證明BC⊥平面PAM.即平面PBC⊥平面PAM.
解答 證明:( I)因?yàn)镸、N分別為BC,AB中點(diǎn),
所以MN∥AC.
因?yàn)镸N?平面PAC,AC?平面PAC,
所以MN∥平面PAC.
( II)因?yàn)镻A⊥平面ABC,BC?平面ABC,
所以PA⊥BC.
因?yàn)锳B=AC=2,M為BC的中點(diǎn),
所以MN⊥BC.
因?yàn)锳M∩PA=A,
所以BC⊥平面PAM.
因?yàn)锽C?平面PBC,
所以平面PBC⊥平面PAM.
點(diǎn)評(píng) 本題考查了空間線(xiàn)面平行、面面垂直的判定,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {α|α=k•360°+300°,k∈Z} | B. | {α|α=k•360°+60°,k∈Z} | ||
C. | {α|α=k•360°+30°,k∈Z} | D. | {α|α=k•360°-60°,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin4x | B. | y=cos2x | C. | y=tan2x | D. | $y=sin(\frac{π}{2}-4x)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com