分析 對函數(shù)f(x)進行求導(dǎo),然后令導(dǎo)函數(shù)大于0,得出原函數(shù)增區(qū)間,令導(dǎo)函數(shù)小于0,得出原函數(shù)的減區(qū)間.
解答 解:f(x)=x(ex-1)-$\frac{1}{2}$x2,
f′(x)=xex+ex-x-1=(x+1)(ex-1),
令f′(x)=0,解得:x1=-1,x2=0,
令f′(x)>0,解得:x<-1或x>0,
函數(shù)在(-∞,-1),(0,+∞)上單調(diào)遞增,
令f′(x)<0,解得:-1<x<0,
函數(shù)在(-1,0)上單調(diào)遞減,
總上可知:f(x)的單調(diào)遞增區(qū)間為:(-∞,-1),(0,+∞),
單調(diào)遞減區(qū)間:(-1,0).
點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查不等式的解法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | kx+y+k=0 | B. | kx-y-1=0 | C. | kx+y-k=0 | D. | kx+y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com