2.已知過點A(-1,0)的動直線l與圓C:x2+(y-3)2=4相交于P、Q兩點,l與直線m:x+3y+6=0相交于N.
(1)當(dāng)l與m垂直時,求直線l的方程,并判斷圓心C與直線l的位置關(guān)系;
(2)當(dāng)|PQ|=2$\sqrt{3}$時,求直線l的方程.

分析 (1)根據(jù)直線m的一個法向量為(1,3),求得直線l的一個方向向量,由此求得l的點向式方程,可得直線l過圓心.
(2)由|PQ|=2$\sqrt{3}$得圓心C到直線l的距離d=1,設(shè)直線l的方程為x-ny+1=0,求得n的值,可得直線l的方程.

解答 解:(1)因為l與m垂直,直線m的一個法向量為(1,3),
所以直線l的一個方向向量為$\overrightarrowik8wfgy$=(1,3),所以l的方程為$\frac{x+1}{1}=\frac{y}{3}$,即3x-y+3=0.
所以直線l過圓心C(0,3).
(2)由|PQ|=2$\sqrt{3}$,得圓心C到直線l的距離d=1,
設(shè)直線l的方程為x-ny+1=0,則由d=$\frac{|1-3n|}{\sqrt{1+{n}^{2}}}$=1.
解得n=0,或n=$\frac{3}{4}$,
所以直線l的方程為x+1=0或4x-3y+4=0.

點評 本題主要考查兩條直線垂直的性質(zhì),點到直線的距離公式,兩個向量坐標(biāo)形式的運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在區(qū)間($\frac{π}{4}$,$\frac{π}{2}$)內(nèi)是增函數(shù),則(  )
A.f($\frac{π}{4}$)=-1B.f(x)的周期為$\frac{π}{2}$C.ω的最大值為4D.f($\frac{3π}{4}$)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m等于( 。
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整數(shù)a的最小值;
(3)若正實數(shù)x1,x2滿足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,證明:x1+x2≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-x3+1+a($\frac{1}{e}$≤x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是( 。
A.[0,e3-4]B.[0,$\frac{1}{{e}^{3}}$+2]C.[$\frac{1}{{e}^{3}}$+2,e3-4]D.[e3-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線的實軸長為2a(a>0),一個焦點為F,虛軸的一個端點為B,如果原點到直線FB的距離恰好為實半軸長,那么雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xm-$\frac{2}{x}$且f(4)=$\frac{7}{2}$,
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明.
(3)求f(x)在[2,5]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知tanα=$\sqrt{3},π<α<\frac{3π}{2}$,則$cos2α-sin({\frac{π}{2}+α})$=(  )
A.0B.-1C.1D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,∠ADC=90°,$AD=AB=\frac{1}{2}CD=1$,PA⊥平面ABCD,E為PD中點,且PC⊥AE.
(1)求證:PA=AD;
(2)求點A到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊答案