分析 (1)根據(jù)直線m的一個法向量為(1,3),求得直線l的一個方向向量,由此求得l的點向式方程,可得直線l過圓心.
(2)由|PQ|=2$\sqrt{3}$得圓心C到直線l的距離d=1,設(shè)直線l的方程為x-ny+1=0,求得n的值,可得直線l的方程.
解答 解:(1)因為l與m垂直,直線m的一個法向量為(1,3),
所以直線l的一個方向向量為$\overrightarrowik8wfgy$=(1,3),所以l的方程為$\frac{x+1}{1}=\frac{y}{3}$,即3x-y+3=0.
所以直線l過圓心C(0,3).
(2)由|PQ|=2$\sqrt{3}$,得圓心C到直線l的距離d=1,
設(shè)直線l的方程為x-ny+1=0,則由d=$\frac{|1-3n|}{\sqrt{1+{n}^{2}}}$=1.
解得n=0,或n=$\frac{3}{4}$,
所以直線l的方程為x+1=0或4x-3y+4=0.
點評 本題主要考查兩條直線垂直的性質(zhì),點到直線的距離公式,兩個向量坐標(biāo)形式的運算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\frac{π}{4}$)=-1 | B. | f(x)的周期為$\frac{π}{2}$ | C. | ω的最大值為4 | D. | f($\frac{3π}{4}$)=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | -$\frac{5}{6}$ | C. | 1 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,e3-4] | B. | [0,$\frac{1}{{e}^{3}}$+2] | C. | [$\frac{1}{{e}^{3}}$+2,e3-4] | D. | [e3-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | $\frac{{\sqrt{3}-1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com