7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m等于( 。
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的最小值,判斷目標(biāo)函數(shù)的最優(yōu)解,求解a即可.

解答 解:變量x,y滿足約束條件的可行域如圖,
z=mx-y(m<2)的最小值為-$\frac{5}{2}$,
可知目標(biāo)函數(shù)的最優(yōu)解過點(diǎn)A,
由$\left\{\begin{array}{l}{y=3}\\{2x-y+2=0}\end{array}\right.$,解得A($\frac{1}{2}$,3),
-$\frac{5}{2}$=$\frac{1}{2}$a-3,解得m=1;
故選:C.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,判斷目標(biāo)函數(shù)的最優(yōu)解是解題的關(guān)鍵,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與雙曲線的右支交于兩點(diǎn)A,B,若|AF1|:|AB|=3:4,且F2是AB的一個(gè)四等分點(diǎn),則雙曲線C的離心率是( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx-2{cos^2}x-1,x∈R$.
(I)求函數(shù)f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知$c=\sqrt{3},f(C)=0,sinB=2sinA$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知離心率為$\frac{\sqrt{5}}{2}$的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,M是雙曲線C的一條漸近線上的點(diǎn),且OM⊥MF2,O為坐標(biāo)原點(diǎn),若S${\;}_{△OM{F}_{2}}$=16,則雙曲線C的實(shí)軸長(zhǎng)是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,已知點(diǎn)D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{DE}$.
(Ⅱ)設(shè)AB=6,AC=4,A=60°,求線段DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),過F2作垂直于實(shí)軸的直線PQ交雙曲線于P,Q兩點(diǎn),若∠PF1Q=$\frac{π}{2}$,則雙曲線的離心率e等于( 。
A.$\sqrt{2}$+2B.$\sqrt{2}$+1C.$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,點(diǎn)B是虛軸上的一個(gè)頂點(diǎn),線段BF與雙曲線C的右支交于點(diǎn)A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,且|$\overrightarrow{BF}$|=4,則雙曲線C的方程為(  )
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知過點(diǎn)A(-1,0)的動(dòng)直線l與圓C:x2+(y-3)2=4相交于P、Q兩點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)當(dāng)l與m垂直時(shí),求直線l的方程,并判斷圓心C與直線l的位置關(guān)系;
(2)當(dāng)|PQ|=2$\sqrt{3}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=$\sqrt{3},SB=2\sqrt{2}$.
(1)證明:面SBC⊥面SAC;
(2)求點(diǎn)A到平面SCB的距離;
(3)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案