【題目】假如你的公司計(jì)劃購(gòu)買臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰,在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元,在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)機(jī)時(shí)購(gòu)買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi),現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的維修服務(wù)次數(shù).
(1)若,求與的函數(shù)解析式.
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求的值.
(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買10次維修服務(wù),或每臺(tái)都購(gòu)買11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買10次還是11次維修服務(wù)?
【答案】(1),
(2)n的最小值為11
(3)應(yīng)購(gòu)買10次維修服務(wù)
【解析】
(1)根據(jù)題意,用分段函數(shù)表示y與x的函數(shù)關(guān)系;
(2)分析“維修次數(shù)不大于10”, “維修次數(shù)不大于11”的頻率即得解;
(3)分別求出每臺(tái)購(gòu)買10次和11次的維修服務(wù)所需費(fèi)用的平均值,比較它們的大小即可.
(1)根據(jù)題意,
即,
(2)因?yàn)椤熬S修次數(shù)不大于10”的頻率
“維修次數(shù)不大于11”的頻率
所以若要求“維修次數(shù)不大于n”的概率不小于0.8,則n的最小值為11.
(3)若每臺(tái)都購(gòu)買10次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費(fèi)用y | 2400 | 2450 | 2500 | 3000 | 3500 |
此時(shí)這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù)為:
(元)
若每臺(tái)都購(gòu)買11次維修服務(wù),則有下表:
維修次數(shù)x | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費(fèi)用y | 2600 | 2650 | 2700 | 2750 | 3250 |
此時(shí)這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù)為:
(元)
因?yàn)?/span>,所以購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買10次維修服務(wù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,我國(guó)鮮切花產(chǎn)業(yè)得到了快速發(fā)展,相關(guān)部門制定了鮮切花產(chǎn)品行業(yè)等級(jí)標(biāo)準(zhǔn),統(tǒng)一使用綜合指標(biāo)值進(jìn)行衡量,如下表所示.某花卉生產(chǎn)基地準(zhǔn)備購(gòu)進(jìn)一套新型的生產(chǎn)線,現(xiàn)進(jìn)行設(shè)備試用,分別從新舊兩條生產(chǎn)線加工的產(chǎn)品中選取30個(gè)樣品進(jìn)行等級(jí)評(píng)定,整理成如圖所示的莖葉圖.
綜合指標(biāo) | |||
質(zhì)量等級(jí) | 三級(jí) | 二級(jí) | 一級(jí) |
(Ⅰ)根據(jù)莖葉圖比較兩條生產(chǎn)線加工的產(chǎn)品的綜合指標(biāo)值的平均值及分散程度(直接給出結(jié)論即可);
(Ⅱ)若從等級(jí)為三級(jí)的樣品中隨機(jī)選取3個(gè)進(jìn)行生產(chǎn)流程調(diào)查,其中來(lái)自新型生產(chǎn)線的樣品個(gè)數(shù)為,求的分布列;
(Ⅲ)根據(jù)該花卉生產(chǎn)基地的生產(chǎn)記錄,原有生產(chǎn)線加工的產(chǎn)品的單件平均利潤(rùn)為4元,產(chǎn)品的銷售率(某等級(jí)產(chǎn)品的銷量與產(chǎn)量的比值)及產(chǎn)品售價(jià)如下表:
三級(jí)花 | 二級(jí)花 | 一級(jí)花 | |
銷售率 | |||
單件售價(jià) | 12元 | 16元 | 20元 |
預(yù)計(jì)該新型生產(chǎn)線加工的鮮切花單件產(chǎn)品的成本為span>10元,日產(chǎn)量3000件.因?yàn)轷r切花產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品統(tǒng)一按原售價(jià)的50%全部處理完.如果僅從單件產(chǎn)品利潤(rùn)的角度考慮,該生產(chǎn)基地是否需要引進(jìn)該新型生產(chǎn)線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(mR)的導(dǎo)函數(shù)為.
(1)若函數(shù)存在極值,求m的取值范圍;
(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年全國(guó)“兩會(huì)”,即中華人民共和國(guó)第十三屆全國(guó)人大二次會(huì)議和中國(guó)人民政治協(xié)商會(huì)議第十三屆全國(guó)委員會(huì)第二次會(huì)議,分別于2019年3月5日和3月3日在北京召開(kāi).為了了解哪些人更關(guān)注“兩會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的200人進(jìn)行調(diào)查.并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為,其中“青少年人”中有40人關(guān)注“兩會(huì)”,“中老年人”中關(guān)注“兩會(huì)”和不關(guān)注“兩會(huì)”的人數(shù)之比是.
(1)求圖中a,b的值;
(2)現(xiàn)采用分層抽樣在和中隨機(jī)抽取8名代表,從8人中任選2人,求2人中至少有1個(gè)是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會(huì)”?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
P(K2≥k0) | 0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過(guò)作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體
(1)求證:
(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;
(3)若平面底面,求六面體的體積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com