【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
【答案】(1)(2).
【解析】
(1)首先利用函數(shù)是偶函數(shù)求得的值,再根據(jù)對稱軸間的距離是半個周期求的值,求得解析式后再求;
(2)首先利用平移,伸縮變換求得函數(shù),再令,求得函數(shù)的單調(diào)遞減區(qū)間.
(1)因為為偶函數(shù),所以,所以.又,所以,所以.
有函數(shù) 的圖象的兩相鄰對稱軸間的距離為,所以,
所以,所以,
所以.
(2)將的圖象向右平移個單位長度后,得到函數(shù)的圖象,再將所得圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到的圖象,
所以.
當,
即時,單調(diào)遞減.
所以函數(shù)的單調(diào)遞減區(qū)間是.
科目:高中數(shù)學 來源: 題型:
【題目】已知是同一平面內(nèi)的三個向量,下列命題中正確的是( )
A.
B.若且,則
C.兩個非零向量,,若,則與共線且反向
D.已知,,且與的夾角為銳角,則實數(shù)的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當x∈[2,+∞)時,
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復合函數(shù)的單調(diào)性,構造關于a的不等式,是解答本題的關鍵.
【題型】單選題
【結束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一項是,接下來的兩項是,,再接下來的三項是,,,依此類推那么該數(shù)列的前50項和為
A. 1044 B. 1024 C. 1045 D. 1025
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】恩格爾系數(shù)是食品支出總額占個人消費支出總額的比重.恩格爾系數(shù)越小,即家庭的消費支出中用于購買食物的支出所占比例越小,更多的消費用于精神追求,標志著家庭越富裕.恩格爾系數(shù)達59%以上為貧困,50~59%為溫飽,40~50%為小康,30~40%為富裕,低于30%為最富裕.下圖給出了1980—2017年我國城鎮(zhèn)居民和農(nóng)村居民家庭恩格爾系數(shù)的變化統(tǒng)計圖,對所列年份進行分析,則下列結論正確的是( )
A.農(nóng)村和城鎮(zhèn)居民家庭消費支出呈下降趨勢
B.農(nóng)村居民家庭比城鎮(zhèn)居民家庭用于購買食品的支出更多
C.1995年我國農(nóng)村居民初步達到小康標準
D.2015年城鎮(zhèn)和農(nóng)村居民食品支出占個人消費支出總額之比大于30.6%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱是“回歸數(shù)列”.
()①前項和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由.②通項公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
()設是等差數(shù)列,首項,公差,若是“回歸數(shù)列”,求的值.
()是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,所有棱長均相等,且AA1⊥平面ABC,點D、E、F分別為所在棱的中點.
(1)求證:EF∥平面CDB1;
(2)求異面直線EF與BC所成角的余弦值;
(3)求二面角B1﹣CD﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com