【題目】超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.
(i)試運用概率統(tǒng)計的知識,若,試求p關于k的函數關系式;
(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:,,,,
【答案】(1)(2)(i)(,且).(ii)最大值為4.
【解析】
(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;
(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關于k的函數關系式;
(ii)由可得,推導出,設(),利用導函數判斷的單調性,由單調性可求出的最大值
(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,
則,
∴恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為
(2)(i)由已知得,的所有可能取值為1,,
,,
,
若,則,則,
,,
∴p關于k的函數關系式為(,且)
(ii)由題意知,得,
,,,
設(),
則,令,則,
∴當時,,即在上單調增減,
又,,
,
又,,
,
∴k的最大值為4
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(1)求曲線的直角坐標方程與直線l的參數方程;
(2)設直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某搜索引擎廣告按照付費價格對搜索結果進行排名,點擊一次付費價格排名越靠前,被點擊的次數也可能會提高,已知某關鍵詞被甲、乙等多個公司競爭,其中甲、乙付費情況與每小時點擊量結果繪制成如下的折線圖.
(1)試根據所給數據計算每小時點擊次數的均值方差并分析兩組數據的特征;
(2)若把乙公司設置的每次點擊價格為x,每小時點擊次數為y,則點(x,y)近似在一條直線附近.試根據前5次價格與每小時點擊次數的關系,求y關于x的回歸直線.(附:回歸方程系數公式:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別為,,,是上的點,的面積最大值為,直線與交于兩點,且(為坐標原點)
(1)求橢圓的方程;
(2)求證:到直線的距離為定值,并求其定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,圓,過點的直線交圓于兩點,過點作直線交直線于點,
(1)求點的軌跡方程;
(2)若是曲線上不重合的四個點,且與交于點,,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:
(1)逐份檢驗,則需要檢驗n次;
(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.
(i)試運用概率統(tǒng)計的知識,若,試求p關于k的函數關系式;
(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.
參考數據:,,,,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】指數是用體重公斤數除以身高米數的平方得出的數字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數值大于或等于20.5時,我們說體重較重,當數值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數的數據如散點圖,請根據所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數據如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據最小二乘法的思想與公式求得線性回歸方程為.利用已經求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預報變量(體重)變化的貢獻值(保留兩位有效數字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數據,需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數據的體重應該為.請重新根據最最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,,,.
(參考數據)
,,,,.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數在點處的切線斜率為0.
(1)試用含有的式子表示,并討論的單調性;
(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com