19.已知函數(shù)f(x)的定義域為(-2,1),則函數(shù)f(2x-1)的定義域為(  )
A.(-$\frac{1}{2}$,1)B.(-5,1)C.($\frac{1}{2}$,1)D.(-2,1)

分析 可令t=2x-1,則f(t)的定義域為(-2,1),即-2<2x-1<1,解不等式即可得到所求定義域.

解答 解:函數(shù)f(x)的定義域為(-2,1),
令t=2x-1,則f(t)的定義域為(-2,1),
即-2<2x-1<1,
解得-$\frac{1}{2}$<x<1,
則函數(shù)f(2x-1)的定義域為(-$\frac{1}{2}$,1).
故選:A.

點評 本題考查函數(shù)的定義域的求法,注意運用換元法,考查解不等式的能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.將一條5米長的繩子隨機的切斷為兩段,則兩段繩子都不短于1米的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知圓O:x2+y2=1和點A(-2,0),若頂點B(b,0)(b≠-2)和常數(shù)λ滿足:對圓O上任意一點M,都有|MB|=λ|MA|,則λ-b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)a=($\frac{1}{3}$)${\;}^{\frac{2}{3}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{3}}$,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,則a,b,c的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點為($0,\frac{3}{2}$),它在y軸右側(cè)的第一個最高點和最低點分別為(x0,3),(x0+2π,-3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個函數(shù)的單調(diào)遞增區(qū)間和對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ax-a+1,(a>0且a≠1)恒過定點(2,2).
(1)求實數(shù)a;
(2)在(1)的條件下,將函數(shù)f(x)的圖象向下平移1個單位,再向左平移a個單位后得到函數(shù)g(x),設(shè)函數(shù)g(x)的反函數(shù)為h(x),求h(x)的解析式;
(3)對于定義在(1,4]上的函數(shù)y=h(x),若在其定義域內(nèi),不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.從一批土雞蛋中,隨機抽取n個得到一個樣本,其重量(單位:克)的頻數(shù)分布表如表:
分組(重量)[80,85)[85,90)[90,95)[95,100]
頻數(shù)(個)1050m15
已知從n個土雞蛋中隨機抽取一個,抽到重量在在[90,95)的土雞蛋的根底為$\frac{4}{19}$
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個,再從這5個土雞蛋中任取2 個,其重量分別是g1,g2,求|g1-g2|≥10概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.f(x)=x2B.f(x)=2xC.y=xD.y=-3x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在等差數(shù)列{an}中,若a3+a9=8,則數(shù)列{an}的前11項和S11等于44.

查看答案和解析>>

同步練習冊答案