分析 由正弦定理與sinA=2sinC,可解得a=2c,將這些代入由余弦定理得出的關(guān)于cosB的方程即可求出.
解答 解:在△ABC中,∵sinA=2sinC,
∴由正弦定理得a=2c,
由余弦定理得b2=a2+c2-2accosB,
將b2=ac及a=2c代入上式解得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{4{c}^{2}+{c}^{2}-2{c}^{2}}{4{c}^{2}}$=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.
點(diǎn)評(píng) 本題主要考查正弦定理與余弦定理,屬于運(yùn)用定理建立所求量的方程通過解方程來求值的題目,訓(xùn)練目標(biāo)是靈活運(yùn)用公式求值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{8}+\frac{y^2}{6}=1$ | C. | $\frac{x^2}{2}+{y^2}=1$ | D. | $\frac{x^2}{4}+{y^2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com