A. | 若xn>0,$\underset{lim}{n→∞}$xn=M,則M>0 | |
B. | 若$\underset{lim}{n→∞}$(xn-yn)=0,則$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn | |
C. | 若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,則$\underset{lim}{n→∞}$xn=N | |
D. | 若$\underset{lim}{n→∞}$xn=p,則$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2 |
分析 令xn=$\frac{1}{n}$,令xn=yn=n,令xn=(-1)n,從而排除A,B,C,從而解得.
解答 解:令xn=$\frac{1}{n}$,則$\underset{lim}{n→∞}$xn=0,故A錯(cuò);
令xn=yn=n,
故$\underset{lim}{n→∞}$xn,$\underset{lim}{n→∞}$yn不存在;故B錯(cuò);
令xn=(-1)n,
則$\underset{lim}{n→∞}$${x}_{n}^{2}$=1,則$\underset{lim}{n→∞}$xn不存在;故C錯(cuò);
由$\underset{lim}{n→∞}$xn=p知$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2,故D對(duì),
故選D.
點(diǎn)評(píng) 本題考查了極限的定義的應(yīng)用及轉(zhuǎn)化思想與演繹法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{12}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | $\sqrt{13}$ | C. | $\frac{\sqrt{22}}{2}$ | D. | $\sqrt{22}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com