分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,結合數(shù)形結合進行求解即可求最小值.
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=x+3y得y=-$\frac{1}{3}x+\frac{z}{3}$,
平移直線y=-$\frac{1}{3}x+\frac{z}{3}$,
由圖象可知當直線y=-$\frac{1}{3}x+\frac{z}{3}$經過點A時,直線y=-$\frac{1}{3}x+\frac{z}{3}$的截距最小,
此時z最。
由$\left\{\begin{array}{l}{x+y-2=0}\\{y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
代入目標函數(shù)得z=1+3×1=4.
即z=x+3y的最小值為4.
故答案為:4.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1≤x≤2} | B. | {x|-1≤x≤2} | C. | {x|0≤x≤2} | D. | {x|-1≤x≤1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com