已知,圓,一動(dòng)圓在軸右側(cè)與軸相切,同時(shí)與圓相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以,為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線的斜率的取值范圍。
(1);(2)

試題分析:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0),由動(dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=,得xp=,由此能求出曲線E的標(biāo)準(zhǔn)方程.
(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),將A,B的坐標(biāo)代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍
解:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0)
因?yàn)閯?dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化簡整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)(2)依題意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由橢圓定義得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲線E的標(biāo)準(zhǔn)方程為
=1.…(6分)(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),將A,B的坐標(biāo)代入橢圓方程中,得3x12+4y12-12=0,3x22+4y22-12=0兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直線AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp由題設(shè)-<y0 (y0≠0),∴-<-y0,…(10分)即-<k<(k≠0).…(12分)
點(diǎn)評(píng):本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左右焦點(diǎn),過軸垂直的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請(qǐng)問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請(qǐng)求出滿足題意的所有直線方程,若不存在請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線和點(diǎn),為拋物線上的點(diǎn),則滿足的點(diǎn)有( )個(gè)。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為
(1)求的直角坐標(biāo)方程;
(2)直線為參數(shù))與曲線C交于,兩點(diǎn),與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的終邊經(jīng)過點(diǎn)A,且點(diǎn)A在拋物線的準(zhǔn)線上,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),又點(diǎn)的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的上頂點(diǎn)為,左焦點(diǎn)為,直線與圓相切.過點(diǎn)的直線與橢圓交于兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

同步練習(xí)冊(cè)答案