【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a2+c2+ ac=b2 , sinA=
(1)求sinC的值;
(2)若a=2,求△ABC的面積.

【答案】
(1)解:由a2+c2+ ac=b2,∴cosB= =

∵B∈(0,π),∴B=

∵sinA= ,A為銳角,∴cosA= =

∴sinC=sin = sinA= =


(2)解:由正弦定理得 = ,∴c= =2 ,

∴SABC= acsinB= =2


【解析】(1)利用余弦定理可得B,再利用和差公式即可得出.(2)利用正弦定理可得c,再利用三角形面積計(jì)算公式即可得出.
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) , ,(a>0).若對(duì)任意實(shí)數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)( ,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動(dòng)點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

1)補(bǔ)全該頻率分布直方圖在[20,30)的部分,并分別計(jì)算日銷售量在 [10,20),[20,30)的員工數(shù);

2)在日銷量為[1030)的員工中隨機(jī)抽取2人,求這兩名員工日銷量在 [2030)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們?cè)诮狱c(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對(duì)的弦長(zhǎng)BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2y28x150,若直線ykx2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是____________

【答案】

【解析】C的方程可化為(x4)2y21,C的圓心為(4,0),半徑為1.由題意知,直線ykx2上至少存在一點(diǎn)A(x0,kx02),以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),存在x0∈R,使得AC≤11成立,即ACmin≤2.

ACmin即為點(diǎn)C到直線ykx2的距離,

≤2,解得0≤k≤.k的最大值是.

型】填空
結(jié)束】
15

【題目】在平面直角坐標(biāo)系中,直線

(1)若直線與直線平行,求實(shí)數(shù)的值;

(2)若 ,點(diǎn)在直線上,已知的中點(diǎn)在軸上,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點(diǎn), .

(Ⅰ)求證 ∥平面 ;
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案