14.(1)已知復(fù)數(shù)z=3+bi,(b為正實(shí)數(shù)),且(z-2)2為純虛數(shù).若w=(2+i)z求復(fù)數(shù)w的模.
(2)有以下三個(gè)不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2
請(qǐng)你觀察這三個(gè)不等式,猜想出一個(gè)一般性的結(jié)論,并證明你的結(jié)論.

分析 (1)利用復(fù)數(shù)(z-2)2為純虛數(shù).求出b,然后求w的模;
(2)由已知等式,發(fā)現(xiàn)規(guī)律得到一般結(jié)論,并利用作差法證明即可.

解答 (1)解:復(fù)數(shù)z=3+bi,(b為正實(shí)數(shù)),且(z-2)2為純虛數(shù).
所以(1-bi)2=1-b2-2bi為純虛數(shù),所以1-b2=0,解得b=1(-1舍去);
所以w=(2+i)z=(2+i)(3+i)=5+5i,所以復(fù)數(shù)w的模為$\sqrt{{5}^{2}+{5}^{2}}=5\sqrt{2}$;
(2)由已知以下三個(gè)不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2
觀察這三個(gè)不等式,猜想出一個(gè)一般性的結(jié)論:解:結(jié)論為:(a2+b2)(c2+d2)≥(ac+bd)2.  
證明:(a2+b2)(c2+d2)-(ac+bd)2
=a2c2+a2d2+b2c2+b2d2-(a2c2+b2d2+2abcd)
=a2d2+b2c2-2abcd=(ac-bd)2≥0
所以(a2+b2)(c2+d2)≥(ac+bd)2

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的計(jì)算依據(jù)歸納推理,要求學(xué)生通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A、B、C的對(duì)邊分別是a,b,c,已知2acosA=-$\sqrt{3}$(ccosB+bcosC).
(1)求角A;
(2)若b=2,且△ABC的面積為$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2sin(x-$\frac{π}{3}$).
(1)用五點(diǎn)法作出函數(shù)y=f(x)在區(qū)間[$\frac{π}{3}$,$\frac{7π}{3}$]上的大致圖象(列表、描點(diǎn)、連線);
(2)若sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),求f(α+$\frac{π}{3}$)+sec2α-tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10,則a2017=( 。
A.2 014B.2 015C.-2014D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈R|1≤x≤3},B={x∈R|x2≥4},則A∩(∁RB)=( 。
A.[-2,3]B.(2,3)C.[1,2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.教育部考試中心在對(duì)高考試卷難度與區(qū)分性能分析的研究中,在2007至2016十年間對(duì)每年理科數(shù)學(xué)的高考試卷隨機(jī)抽取了若干樣本,統(tǒng)計(jì)得到解答題得分率x以及整卷得分率y的數(shù)據(jù),如下表:
 年份 2007 2008 20092010  2011 20122013  20142015  2016
 解答題得分率(x) 0.39 0.30 0.25 0.28 0.55 0.33 0.36 0.40 0.40 0.42
 整卷得分率(y) 0.50 0.43 0.41 0.44 0.59 0.47 0.52 0.56 0.54 0.57
(1)利用最小二乘法求出y關(guān)于x的線性回歸方程;(精確到0.01)
(2)若以函數(shù)y=0.85$\sqrt{x}$-0.01來擬合y與x之間的關(guān)系,計(jì)算得到相關(guān)指數(shù)R2=0.87,對(duì)比(1)中模型,哪一個(gè)模型擬合效果更好?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
參考數(shù)據(jù):$\sum_{i=1}^{10}{x}_{i}$≈3.7,$\sum_{i=1}^{10}{y}_{i}$≈5,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$≈1.89,$\sum_{i=1}^{10}{{x}_{i}}^{2}$≈1.429,$\sum_{i=1}^{10}({y}_{i}-\widehat{{y}_{i}})^{2}$≈0.006,$\sum_{i=1}^{10}$(yi-$\overline{y}$)2≈0.036
其中${\widehat{y}}_{i}$表示(1)中擬合直線對(duì)應(yīng)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,已知4sinAcos2A-$\sqrt{3}$cos(B+C)=sin3A+$\sqrt{3}$.
(Ⅰ)求A的值;
(Ⅱ)若△ABC為銳角三角形,b=2,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC的面積是S△ABC,若角A、B、C所對(duì)的邊為a,b,c,且有c2+b2-a2=4S△ABC
(1)求角A的大。
(2)若a=$\sqrt{2}$,D為BC邊上的點(diǎn),且DC=$\sqrt{3}$BD,求線段AD的長(zhǎng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若$C_{10}^x=C_{10}^2$,則正整數(shù)x的值為( 。
A.2B.8C.2或6D.2或8

查看答案和解析>>

同步練習(xí)冊(cè)答案