分析 利用三角恒等變換化函數(shù)f(x)為正弦型函數(shù),
(Ⅰ)由此求出f(x)的最小正周期;
(Ⅱ)根據(jù)x的取值范圍,求出2x+$\frac{π}{6}$的取值范圍,再根據(jù)正弦函數(shù)的圖象與性質(zhì),即可求出f(x)的值域.
解答 解:函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1
=2•$\frac{1+cos2x}{2}$+$\sqrt{3}$sin2x-1
=$\sqrt{3}$sin2x+cos2x
=2sin(2x+$\frac{π}{6}$),(x∈R);
(Ⅰ)則函數(shù)f(x)的最小正周期為
T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π;
(Ⅱ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時(shí),
∴2x∈[-$\frac{π}{6}$,π],
∴2x+$\frac{π}{6}$∈[0,$\frac{2π}{3}$],
∴sin(2x+$\frac{π}{6}$)∈[0,1],
∴2sin(2x+$\frac{π}{6}$)∈[0,2],
即函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域是[0,2].
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,也考查了三角恒等變換的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | [-1,0) | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1)∪(4,+∞) | B. | (-1,4) | C. | (-∞,-4)∪(1,+∞) | D. | (-4,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 12 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com