設(shè)非零向量
=(m,n),
=(p,q)定義向量間運(yùn)算“*“為
*
=(mp-np,mq+np).
(1)求|
*
|
(2)若np≠mq,比較|
•
|
2與|
*
|
2的大。
考點:平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:依據(jù)題目給的新定義,直接套入公式計算即可.
解答:
解:(1)由題意知
*
=(mp-np,mq+np),
所以
|*|==
.
(2)由已知得
|•|2=||2||2cos2θ=(m
2+n
2)(p
2+q
2)cos
2θ,(θ為向量
,的夾角).
而由(1)知
|*|2=(m2+n2)(p2+q2).
因為np≠mq,所以向量
,不共線,所以0<cos
2θ<1.
所以
|•|2<|*|2.
點評:本題一方面考查了新定義問題,同時考查了數(shù)量積的定義及其性質(zhì),屬于基礎(chǔ)題,要注意對定義的理解和掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
(1)已知a+b+c=1,a,b,c∈(0,+∞),求證:alog3a+blog3b+clog3c≥-1;
(2)已知a1+a2+…+a 3n=1,ai>0(i=1,2,3,…,3n),求證:a1log3a1+a2log3a2+a3log3a3+…+a 3nlog3a 3n≥-n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若實數(shù)x、y滿足方程2x=e
x+y-1+e
x-y-1(e是自然對數(shù)的底),則e
xy=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知|
|=2,|
|=3,
與
的夾角為
,若
+λ
與λ
+
的夾角為銳角,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知直線l:x-2ycosα+3=0(α∈[
,
]),則直線l的傾斜角的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)=
x
2+sin(
+x),則f′(x)的大致圖象是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求函數(shù)y=
-lg
的零點個數(shù)?及所在區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
方程(
)
x+x-3=0的解的個數(shù)有( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知p:|2-
|>3,q:x
2-2x+1-m
2>0(m>0).若p是q的必要非充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>