【題目】如圖,邊長(zhǎng)為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA//平面MBD.
(2)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)存在點(diǎn)N,當(dāng)N為AB中點(diǎn)時(shí),平面PQB⊥平面PNC,證明見解析.
【解析】
(1) 連接AC交BD于點(diǎn)O,證明MO//PA,可得PA//平面MBD;
(2)先利用正方形ABCD所在平面與正△PAD所在平面互相垂直可得PQ⊥平面ABCD,
結(jié)合PQ⊥NC,可得NC⊥平面PQB.
解:(1)證明:連接AC交BD于點(diǎn)O,連接MO,.
由正方形ABCD知O為AC的中點(diǎn),
∵M為PC的中點(diǎn),
∴MO//PA.
∵平面MBD,平面MBD,
∴PA//平面MBD.
(2)存在點(diǎn)N,當(dāng)N為AB中點(diǎn)時(shí),平面PQB⊥平面PNC,證明如下:
∵四邊形ABCD是正方形,Q為AD的中點(diǎn),
∴BQ⊥NC.
∵Q為AD的中點(diǎn),△PAD為正三角形,
∴PQ⊥AD.
又∵平面PAD⊥平面ABCD,且面PAD∩面ABCD=AD,平面PAD
∴PQ⊥平面ABCD.
又∵平面ABCD,
∴.PQ⊥NC.
又,
∴NC⊥平面PQB.
∵平面PCN,
∴平面PCN⊥平面PQB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面是邊長(zhǎng)為1的正方形,側(cè)棱底面,且,是側(cè)棱上的動(dòng)點(diǎn).
(1)求四棱錐的體積;
(2)如果是的中點(diǎn),求證:平面;
(3)不論點(diǎn)在側(cè)棱的任何位置,是否都有?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)
(I) 求x,y ;
(II) 若從高校B、C抽取的人中選2人作專題發(fā)言,求這二人都來自高校C的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)動(dòng)直線:分別與曲線,相交于點(diǎn),,求當(dāng)為何值時(shí),取最大值,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是,曲線C2的參數(shù)方程是(θ為參數(shù)).
(1)寫出曲線C1,C2的普通方程;
(2)設(shè)曲線C1與y軸相交于A,B兩點(diǎn),點(diǎn)P為曲線C2上任一點(diǎn),求|PA|2+|PB|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,其中是自然對(duì)數(shù)的底數(shù),.
(1)當(dāng)時(shí),證明:;
(2)是否存在實(shí)數(shù),使的最小值為3,如果存在,求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長(zhǎng)軸長(zhǎng)是10,離心率是;
(2)在x軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線互相垂直,且焦距為6.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com