【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)談?wù)摵瘮?shù)的零點(diǎn)個(gè)數(shù)
【答案】(1) 的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是 (2)見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)不等式,求出函數(shù)的單調(diào)區(qū)間;
(2)由(1)知當(dāng)時(shí),,分,,三種情況討論,由函數(shù)的定義域?yàn)?/span>顯然沒有零點(diǎn),當(dāng)轉(zhuǎn)化為函數(shù)的交點(diǎn)問題.
解:(1)∵,
故,
∵
∴時(shí),,故單調(diào)遞減,
時(shí),,故單調(diào)遞增,
所以,時(shí),的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是
(2)由(1)知,
當(dāng)時(shí),在處取最小值,
當(dāng)時(shí),,在其定義域內(nèi)無零點(diǎn)
當(dāng)時(shí),,在其定義域內(nèi)恰有一個(gè)零點(diǎn)
當(dāng)時(shí),最小值,因?yàn)?/span>,且在單調(diào)遞減,故函數(shù)在上有一個(gè)零點(diǎn),
因?yàn)?/span>,,,又在上單調(diào)遞增,故函數(shù)在上有一個(gè)零點(diǎn),故在其定義域內(nèi)有兩個(gè)零點(diǎn);
當(dāng)時(shí),在定義域內(nèi)無零點(diǎn);
當(dāng)時(shí),令,可得,分別畫出與,易得它們的圖象有唯一交點(diǎn),即此時(shí)在其定義域內(nèi)恰有一個(gè)零點(diǎn)
綜上,時(shí),在其定義域內(nèi)無零點(diǎn);或時(shí),在其定義域內(nèi)恰有一個(gè)零點(diǎn);時(shí),在其定義域內(nèi)有兩個(gè)零點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《西游記》《三國(guó)演義》《水滸傳》和《紅樓夢(mèng)》是中國(guó)古典文學(xué)瑰寶,并稱為中國(guó)古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢(mèng)》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢(mèng)》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著新課程改革和高考綜合改革的實(shí)施,高中教學(xué)以發(fā)展學(xué)生學(xué)科核心素養(yǎng)為導(dǎo)向,學(xué)習(xí)評(píng)價(jià)更關(guān)注學(xué)科核心素養(yǎng)的形成和發(fā)展.為此,我市于2018年舉行第一屆高中文科素養(yǎng)競(jìng)賽,競(jìng)賽結(jié)束后,為了評(píng)估我市高中學(xué)生的文科素養(yǎng),從所有參賽學(xué)生中隨機(jī)抽取1000名學(xué)生的成績(jī)(單位:分)作為樣本進(jìn)行估計(jì),將抽取的成績(jī)整理后分成五組,從左到右依次記為,,,,,并繪制成如圖所示的頻率分布直方圖.
(1)請(qǐng)補(bǔ)全頻率分布直方圖并估計(jì)這1000名學(xué)生成績(jī)的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)采用分層抽樣的方法從這1000名學(xué)生的成績(jī)中抽取容量為40的樣本,再?gòu)脑摌颖境煽?jī)不低于80分的學(xué)生中隨機(jī)抽取2名進(jìn)行問卷調(diào)查,求至少有一名學(xué)生成績(jī)不低于90分的概率;
(3)我市決定對(duì)本次競(jìng)賽成績(jī)排在前180名的學(xué)生給予表彰,授予“文科素養(yǎng)優(yōu)秀標(biāo)兵”稱號(hào).一名學(xué)生本次競(jìng)賽成績(jī)?yōu)?9分,請(qǐng)你判斷該學(xué)生能否被授予“文科素養(yǎng)優(yōu)秀標(biāo)兵”稱號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長(zhǎng)為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足且,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是( )
A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個(gè)位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時(shí),
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,再?gòu)倪@5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點(diǎn)F為拋物線的焦點(diǎn),焦點(diǎn)F到直線3x-4y+3=0的距離為d1,焦點(diǎn)F到拋物線C的準(zhǔn)線的距離為d2,且。
(1)拋物線C的標(biāo)準(zhǔn)方程;
(2)若在x軸上存在點(diǎn)M,過點(diǎn)M的直線l分別與拋物線C相交于P、Q兩點(diǎn),且為定值,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購(gòu)買甲、乙、丙三種魚苗在魚塘中進(jìn)行養(yǎng)殖試驗(yàn),試驗(yàn)后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨(dú)立.
(1)試驗(yàn)時(shí)從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)試驗(yàn)后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購(gòu)買尾乙種魚苗進(jìn)行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實(shí)施對(duì)能夠自然成活的魚苗不產(chǎn)生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬元,問需至少購(gòu)買多少尾乙種魚苗?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過分別作曲線與的切線,且與關(guān)于軸對(duì)稱,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
晝夜溫差() | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(人) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;
(2)若選取的是1月20日,2月5日,2月20日,3月5日四組數(shù)據(jù).
①請(qǐng)根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程(,用分?jǐn)?shù)表示);
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與剩余的檢驗(yàn)數(shù)據(jù)的誤差均不超過1人,則認(rèn)為得到的線性回歸方程是理想的,試問①中所得線性回歸方程是否理想?
附參考公式:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com