【題目】已知函數(shù).
(1)討論函數(shù)的單調性;
(2)若,過分別作曲線與的切線,且與關于軸對稱,求證: .
【答案】(1)見解析;(2) 見解析.
【解析】試題分析:(1) 求出,分五種情討論,分別令得增區(qū)間, 得減區(qū)間;(2)根據(jù)導數(shù)的幾何意義可求出兩切線的斜率分別為,根據(jù)切點處兩函數(shù)縱坐標相等可得關于的兩個等式,由其中一個等式求得的范圍,再根據(jù)另一個等式利用導數(shù)求得的范圍.
試題解析:由已知得,所以.
(1) . ① 若,當或時, ;當時, ,所以的單調遞增區(qū)間為;
單調遞減區(qū)間為. ②若,當時, ;當時, ,所以的單調遞增區(qū)間為;單調遞減區(qū)間為. ③ 若,當或時, ;當時, ,所以的單調遞增區(qū)間為;單調遞減區(qū)間為.④若,故的單調遞減區(qū)間為.⑤若,當或時, ;當時, ,所以的單調遞增區(qū)間為;單調遞減區(qū)間為.
當時, 的單調遞增區(qū)間為;單調遞減區(qū)間為.
當時, 的單調遞增區(qū)間為;單調遞減區(qū)間為.當時, 的單調遞增區(qū)間為;單調遞減區(qū)間為.
當時, 的單調遞減區(qū)間為;當時, 單調遞增區(qū)間為 ;
單調遞減區(qū)間為,;
(2) ,設的方程為,切點為,則,所以.由題意知,所以的方程為,設與的切點為,則.
又,即,令,在定義域上, ,所以上, 是單調遞增函數(shù),又,所以,即,令,則,所以,故
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離島海里處,不讓其進入島海里內的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位,得函數(shù)的圖象(如圖) ,點分別是函數(shù)圖象上軸兩側相鄰的最高點和最低點,設,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程=x+;
(2)利用(1)中所求出的直線方程預測該地2018年的糧食需求量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點, 為坐標原點,點在橢圓上,線段與軸的交點滿足.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當,且滿足時,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000條,給每條魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機地捕出1 000條魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10次,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.
(1)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;
(2)為了估計池塘中魚的總質量,現(xiàn)按照(1)中的比例對100條魚進行稱重,根據(jù)稱重魚的質量介于[0,4.5](單位:千克)之間,將測量結果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.
①估計池塘中魚的質量在3千克以上(含3千克)的條數(shù);
②若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7條,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的質量的眾數(shù)及池塘中魚的總質量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1)是一個水平放置的正三棱柱, 是棱的中點,正三棱柱的主視圖如圖(2).
(1)圖(1)中垂直于平面的平面有哪幾個(直接寫出符合要求的平面即可,不必說明或證明)
(2)求正三棱柱的體積;
(3)證明: 平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com