【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn),正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(gè)(直接寫出符合要求的平面即可,不必說明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

【答案】(1)詳見解析;(2;(3)詳見解析.

【解析】試題分析:(1)由于幾何體為正三棱柱,故兩個(gè)底面和側(cè)面垂直,由于平面,所以面也和平面垂直.(2)先計(jì)算得底面邊長為,由三視圖可知高為,由此求得幾何體的體積.(3)連接,連接,利用三角形的中位線證明,從而證明線面平行.

試題解析:

(1)平面、平面、平面

(2)依題意,在正三棱柱中, 從而.

所以正三棱柱的體積 .

(3)連接設(shè)連接.

因?yàn)?/span>是正三棱柱的側(cè)面,所以是矩形, 的中點(diǎn).

所以的中位線,

因?yàn)?/span>平面平面,所以平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,過分別作曲線的切線,且關(guān)于軸對稱,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一張長為,寬為)的長方形鐵皮,準(zhǔn)備用它做成一個(gè)無蓋長方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長方形的一個(gè)角上剪下一塊邊長為的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側(cè)面,設(shè)長方體的高為,體積為.

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該鐵皮容器體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求直線和圓的極坐標(biāo)方程;

(2)射線(其中)與圓交于兩點(diǎn),與直線交于點(diǎn),射線與圓交于兩點(diǎn),與直線交于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時(shí),求函數(shù)處的切線方程;

(Ⅱ)令,求函數(shù)的極值;

(Ⅲ)若,正實(shí)數(shù), 滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)件,需另投入成本為(萬元).當(dāng)月產(chǎn)量不足30件時(shí), (萬元);當(dāng)月產(chǎn)量不低于30件時(shí), (萬元).因設(shè)備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價(jià)為5萬元,且該廠每個(gè)月生產(chǎn)的商品都能當(dāng)月全部銷售完.

(1)寫出月利潤(萬元)關(guān)于月產(chǎn)量(件)的函數(shù)解析式;

(2)當(dāng)月產(chǎn)量為多少件時(shí),該廠所獲月利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,:

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)命題:

①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;

②在獨(dú)立性檢驗(yàn)中,隨機(jī)變量的值越大,說明兩個(gè)分類變量有關(guān)系的可能性越大;

③在回歸方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加1個(gè)單位;

④兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;

其中真命題是:

A. ①④ B. ②④ C. ①② D. ②③

查看答案和解析>>

同步練習(xí)冊答案