【題目】已知定義域?yàn)镽的函數(shù)f(x)在(2,+∞)為增函數(shù),且函數(shù)y=f(x+2)為偶函數(shù),則下列結(jié)論不成立的是(
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)

【答案】C
【解析】解:∵函數(shù)f(x)在(2,+∞)為增函數(shù)
∴函數(shù)y=f(x+2)在(0,+∞)為增函數(shù)
又∵函數(shù)y=f(x+2)為偶函數(shù),
∴函數(shù)y=f(x+2)在(﹣∞,0)為減函數(shù)
即函數(shù)y=f(x)在(﹣∞,2)為減函數(shù)
則函數(shù)y=f(x)的圖象如下圖示:
由圖可知:f(0)>f(1),
f(0)>f(2),f(1)>f(2)均成立
只有f(1)與f(3)無(wú)法判斷大小
故選C

【考點(diǎn)精析】掌握函數(shù)單調(diào)性的性質(zhì)和函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積是 ,表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函數(shù)的最值;
(2)若函數(shù)在定義域內(nèi)是單調(diào)函數(shù),求a取值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線

(1)求出的普通方程;

(2)設(shè)直線 的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,的中點(diǎn),將沿折起,使得平面.

(Ⅰ)求證:平面平面

(Ⅱ)若的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和直線

1求證:不論取什么值,直線和圓C總相交;

(2)求直線被圓C截得的最短弦長(zhǎng)及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】奇函數(shù)f(x)、偶函數(shù)g(x)的圖象分別如圖1、2所示,方程f(g(x))=0、g(f(x))=0的實(shí)根個(gè)數(shù)分別為a、b,則a+b=(

A.14
B.10
C.7
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動(dòng)點(diǎn)滿足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若直線與曲線相交于 兩個(gè)不同點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案