【題目】如圖,在直角梯形中,,的中點,將沿折起,使得平面.

(Ⅰ)求證:平面平面 ;

(Ⅱ)若的中點,求三棱錐的體積.

【答案】(1)見解析(2)

【解析】試題分析:(1)先由⊥底面,再根據(jù)平幾知識得為正方形,即有.最后根據(jù)線面垂直判定定理得平面,即得平面平面.(2)求三棱錐體積先找高,即找線面垂直:易得平面.再利用等體積法得,最后根據(jù)錐體體積公式求體積.

試題解析:(Ⅰ)證明:∵⊥底面,∴

又由于, ,

為正方形,

,故平面,

因為平面,所以平面平面

(Ⅱ)解: ,又平面, 平面,

所以平面,

∴點到平面的距離即為點到平面的距離.

又∵ 的中點,

由(Ⅰ)知平面,所以有.

由題意得,故

于是,由,可得平面

又∵平面 ,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,,底面正三角形

證明;

)若平面,,棱錐體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中超過的概率;

(2)我們把比分分差不超過15分的比賽稱為“膠著比賽”.為了考察易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯(lián)在這兩場比賽中至少有一場超過的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷之間是否具有線性相關關系?結合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為, .

1)求數(shù)列的通項公式;

2)令,設數(shù)列的前項和為,

3)令,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

(1)求及基地的預期收益;

(2)若該基地額外聘請工人,可在周一當天完成全部采摘任務,若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)在(2,+∞)為增函數(shù),且函數(shù)y=f(x+2)為偶函數(shù),則下列結論不成立的是(
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點.

(Ⅰ)證明: ;

(Ⅱ)若上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的單調增函數(shù)f(x),對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(k3x)+f(3x﹣9x﹣2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為(

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案