9.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)若對(duì)任意的實(shí)數(shù)a,函數(shù)f(x)與g(x)的圖象在x=x0處的切線(xiàn)斜率總相等,求x0的值;
(2)對(duì)任意x≥1,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)利用導(dǎo)數(shù)的幾何意義,分別求出f(x)和g(x)在x=x0處的切線(xiàn)的斜率,則有f′(x0)=g′(x0)對(duì)任意實(shí)數(shù)a總成立,從而列出關(guān)于x0的方程,求解即可得答案;
(2)將不等式f(x)-g(x)≥1等價(jià)表示為ax+$\frac{a-1}{x}$-lnx≥1,令h(x)=ax+$\frac{a-1}{x}$-lnx,求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)的正負(fù),確定函數(shù)h(x)的單調(diào)性,判斷出h(x)的取值范圍,從而得到實(shí)數(shù)a的取值范圍.

解答 解:(1)∵f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx,
∴f′(x)=a+$\frac{1-a}{{x}^{2}}$,g′(x)=$\frac{1}{x}$,
由題設(shè)知x0>0,且f′(x0)=g′(x0),即a+$\frac{1-a}{{{x}_{0}}^{2}}$=$\frac{1}{{x}_{0}}$,
∴ax02-x0+1-a=0,即a(x02-1)+(1-x0)=0,
∵上式對(duì)任意實(shí)數(shù)a恒成立,
∴$\left\{\begin{array}{l}{{{x}_{0}}^{2}-1=0}\\{1-{x}_{0}=0}\end{array}\right.$,解得x0=1,
故x0=1;
(2)∵f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx,
∴f(x)-g(x)≥1,即ax+$\frac{a-1}{x}$-lnx≥1,
令h(x)=ax+$\frac{a-1}{x}$-lnx,則h(x)≥1在x∈(0,+∞)上恒成立,
又h′(x)=a+$\frac{1-a}{{x}^{2}}$-$\frac{1}{x}$=$\frac{a{x}^{2}-x+1-a}{{x}^{2}}$=$\frac{a(x+1-\frac{1}{a})(x-1)}{{x}^{2}}$(x>0,a>0),
①若0<a≤$\frac{1}{2}$,則-1+$\frac{1}{a}$>1,
∴當(dāng)x∈(0,1)時(shí),h′(x)>0,
則h(x)在(0,1)單調(diào)遞增,
∴h(x)<h(1)=2a-1≤0,
這與h(x)≥1在x∈(0,+∞)上恒成立矛盾,
故0<a≤$\frac{1}{2}$不符合題意;
②若$\frac{1}{2}$<a<1,則0<-1+$\frac{1}{a}$<1,
∴當(dāng)x∈(1,+∞)時(shí),h′(x)>0,
則h(x)在(1,+∞)上單調(diào)遞增,
∴h(x)>h(1)=2a-1,
而h(1)=2a-1<1,
這與h(x)≥1在x∈(0,+∞)上恒成立矛盾,
故$\frac{1}{2}$<a<1不符合題意;
③若a≥1,則-1+$\frac{1}{a}$≤0,
∴當(dāng)x∈(0,1)時(shí),h′(x)<0,當(dāng)x∈(1,+∞)時(shí),h′(x)>0,
則h(x)在(0,1)上單調(diào)遞減,h(x)在(1,+∞)上單調(diào)遞增,
∴h(x)min=h(1)=2a-1≥1,即h(x)≥1在x∈(0,+∞)上恒成立,
∴a≥1符合題意.
綜合①②③,實(shí)數(shù)a的取值范圍是[1,+∞).

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,函數(shù)的恒成立問(wèn)題.導(dǎo)數(shù)的幾何意義即在某點(diǎn)處的導(dǎo)數(shù)即該點(diǎn)處切線(xiàn)的斜率,解題時(shí)要注意運(yùn)用切點(diǎn)在曲線(xiàn)上和切點(diǎn)在切線(xiàn)上.對(duì)于函數(shù)的恒成立問(wèn)題,一般選用參變量分離法、最值法、數(shù)形結(jié)合法進(jìn)行求解.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.過(guò)點(diǎn)A(3,1)作圓(x-2)2+(y-2)2=4的弦,則當(dāng)弦長(zhǎng)最短時(shí)弦所在的直線(xiàn)方程為( 。
A.x+y-4=0B.x-y+2=0C.x+y+4=0D.x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
愛(ài)好4020
不愛(ài)好2030
算得,K2≈7.81.參照附表,得到的正確結(jié)論是( 。
A.再犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.再犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
D.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3-2ax2+3a2x+b(a>0).
(1)當(dāng)y=f(x)的極小值為1時(shí),求b的值;
(2)若f(x)在區(qū)間[1,2]上是減函數(shù),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并比較3n與π3的大;
(2)若正實(shí)數(shù)a滿(mǎn)足對(duì)任意x∈(0,+∞)都有ax2f(x)+1≥0,求正實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,正三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直,且OA=OB=OC=2.E、F分別是AB、AC的中點(diǎn),過(guò)EF作平面與側(cè)棱OA,OB,OC或其延長(zhǎng)線(xiàn)分別相交于A1、B1、C1
(Ⅰ)求證:直線(xiàn)B1C1∥平面ABC;
(Ⅱ)若OA1=$\frac{3}{2}$,求二面角O-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求C
(2)若△ABC的面積為5$\sqrt{3}$,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算
(1)27${\;}^{-\frac{1}{3}}$+64${\;}^{\frac{2}{3}}$-3-1+($\sqrt{2}$-1)0
(2)$\frac{lg8+lg125-lg2-lg5}{lg\sqrt{10}•lg0.1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

函數(shù)的圖象可能是( )

查看答案和解析>>

同步練習(xí)冊(cè)答案