5.設(shè)An,Bn是等差數(shù)列{an},{bn}的前n項和,且滿足條件$\frac{A_n}{B_n}=\frac{n+5}{2n+2}$,則$\frac{{{a_{2015}}}}{{{b_{2017}}}}$的值為$\frac{1}{2}$.

分析 設(shè)An=kn(n+5),Bn=kn(2n+2),求出通項,即可求出$\frac{{{a_{2015}}}}{{{b_{2017}}}}$的值.

解答 解:∵An,Bn是等差數(shù)列{an},{bn}的前n項和,且滿足條件$\frac{A_n}{B_n}=\frac{n+5}{2n+2}$,
∴設(shè)An=kn(n+5),Bn=kn(2n+2),
∴an=An-An-1=2k(n+2),bn=Bn-Bn-1=4kn,
∴$\frac{{{a_{2015}}}}{{{b_{2017}}}}$=$\frac{2k(2015+2)}{4k×2017}$=$\frac{1}{2}$.
故答案是:$\frac{1}{2}$.

點(diǎn)評 本題考查等差數(shù)列的通項與求和,考查學(xué)生的計算能力,正確求出等差數(shù)列的通項是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]•cosx-$\sqrt{3}$sin2x;將f(x)的圖象向右平移$\frac{π}{6}$個單位后得g(x)的圖象.
(1)求函數(shù)g(x)在[0,π]上的值域;
(2)在△ABC中,若$\frac{sinB}$=$\frac{\sqrt{3}a}{cosA}$,a=4,求$\sqrt{3}$b-c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)y=x3與y=($\frac{1}{2}$)x-2的圖象的交點(diǎn)為(x0,y0),若x0∈(n,n+1),n∈N,則x0所在的區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,則F=max{|x2-4y+m|,|y2-2x+n|}的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=3x+λ•3-x(λ∈R)
(1)根據(jù)λ的不同取值,討論函數(shù)的奇偶性,并說明理由;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P為線段CD上一點(diǎn),且滿足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,則$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)已知奇函數(shù)f(x)的定義域?yàn)閇-2,2],且在區(qū)間[-2,0]上遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.
(Ⅱ)已知f(x)為定義在[a-1,2a+1]上的偶函數(shù),當(dāng)x≥0時,f(x)=ex+1,則f(2x+1)>f($\frac{x}{2}$+1)的解x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

查看答案和解析>>

同步練習(xí)冊答案