直線l的斜率k=tana ,則直線l的傾斜角是

[  ]

Aa

B

C.-a

Daπ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩條過原點(diǎn)O的直線l1,l2分別與x軸、y軸成30°的角,已知線段PQ的長(zhǎng)度為2,且點(diǎn)P(x1,y1)在直線l1上運(yùn)動(dòng),點(diǎn)Q(x2,y2)在直線l2上運(yùn)動(dòng).
(Ⅰ)求動(dòng)點(diǎn)M(x1,x2)的軌跡C的方程;
(Ⅱ)設(shè)過定點(diǎn)T(0,2)的直線l與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點(diǎn)C (t,
2
t
)(t∈R),t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為坐標(biāo)原點(diǎn).
(1)求證:△OAB的面積為定值.
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N若|OM|=|ON|,求圓C的方程.
(3)若t>0,當(dāng)圓C的半徑最小且時(shí),圓C上至少有三個(gè)不同的點(diǎn)到直線l:y-
2
=k(x-3-
2
)
的距離為
1
2
,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)A(1,0).點(diǎn)R在y軸上運(yùn)動(dòng),T在x軸上,N為動(dòng)點(diǎn),且
RT
RA
=0,
RN
+
RT
=0,
(1)設(shè)動(dòng)點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(2)過點(diǎn)B(-2,0)的直線l與曲線C交于點(diǎn)P、Q,若在曲線C上存在點(diǎn)M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x+ty+t=0與連接A(-
3
,2),B(2,1)
的線段總有公共點(diǎn),則直線l的斜率k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期第一次段考理科數(shù)學(xué)試卷 題型:解答題

已知以點(diǎn)C (t, )(tR),t≠0)為圓心的圓與x軸交于點(diǎn)OA,與y軸交于點(diǎn)OB,其中O為坐標(biāo)原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線y= –2x+4與圓C交于點(diǎn)MN若|OM|=|ON|,求圓C的方程.

(3)若t>0,當(dāng)圓C的半徑最小時(shí),圓C上至少有三個(gè)不同的點(diǎn)到直線ly的距離為,求直線l的斜率k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案