【題目】環(huán)保部門研究發(fā)現(xiàn)某地的PM10濃度與車流量之間有線性相關(guān)關(guān)系現(xiàn)采集到該地一周內(nèi)車流量xPM10濃度y的數(shù)據(jù)如表:

時間

車流量單位:萬輛

PM10濃度單位:

星期一

星期二

星期三

星期四

星期五

星期六

星期日

在如圖所示的坐標系中作出表中數(shù)據(jù)的散點圖;

根據(jù)表中統(tǒng)計數(shù)據(jù),求出線性回歸方程計算b時精確到,計算a時精確到

為凈化空氣,該地決定下周起在工作日星期一至星期五限號假設(shè)限號時每個工作日的車流量為表中對應工作日的,試預測下周星期三的PM10濃度精確到

參考公式:

參考數(shù)據(jù),

【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).

【解析】

由已知表格中的數(shù)據(jù)直接作出散點圖;分別求出的值,可得線性回歸方程;求出下周星期三的車流量,代入線性回歸方程得答案.

關(guān)于x的線性回歸方程為;

下周星期三的車流量預計為萬輛

預測下周星期三的PM10濃度為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.

1)求函數(shù)的解析式;

2)在中,角、所對的邊分別為、,且,若角滿足,求的取值范圍;

3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應的函數(shù)記作,已知常數(shù),且函數(shù)內(nèi)恰有個零點,求常數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,摩天輪上的一點時刻距離地面的高度滿足,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時針做勻速轉(zhuǎn)動,每6分鐘轉(zhuǎn)一圈,點的起始位置在摩天輪的最低點.

1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;

2)在摩天輪從最低點開始計時轉(zhuǎn)動的一圈內(nèi),有多長時間點P距離地面不低于100米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,的重心,.

(1)求證:平面;

(2)若側(cè)面底面,,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,則下列結(jié)論正確的是 ( )

A. 向左平移個單位長度,得到的曲線關(guān)于原點對稱

B. 向右平移個單位長度,得到的曲線關(guān)于軸對稱

C. 向左平移個單位長度,得到的曲線關(guān)于原點對稱

D. 向右平移個單位長度,得到的曲線關(guān)于軸對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.

(1)求證:平面平面;

(2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案