已知函數(shù).
(1)當(dāng)時(shí),求的解集;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的集合.
(1);(2).
解析試題分析:
解題思路:(1)利用,去掉絕對(duì)值符號(hào)進(jìn)行求解(2)先根據(jù)所給范圍,化簡不等式,再利用求解,利用最值求的范圍.
規(guī)律總結(jié):處理絕對(duì)值不等式問題,主要從去掉絕對(duì)值符號(hào)入手,往往討論變量的范圍去掉絕對(duì)值符號(hào),變成分段函數(shù)求解問題;證明問題還往往涉及的應(yīng)用.
試題解析:(1)解:原不等式可化為,
當(dāng)時(shí),,則,無解;
當(dāng)時(shí),,則,∴;
當(dāng)時(shí),,則,∴,
綜上所述:原不等式的解集為.
(2)原不等式可化為,
∵,∴,
即,
故對(duì)恒成立,
當(dāng)時(shí),的最大值為,的最小值為,
∴實(shí)數(shù)的集合為.
考點(diǎn):1.絕對(duì)值不等式;2.恒成立問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分7分)選修4—5:不等式選將
已知定義在R上的函數(shù)的最小值為.
(I)求的值;
(II)若為正實(shí)數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)當(dāng),,時(shí),求的解集;
(2)當(dāng),且當(dāng)時(shí),恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)解不等式:;
(2)當(dāng)時(shí), 不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個(gè)新建的居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)A(3,20),B(-10,0),C(14,0)處.現(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個(gè)文化中心.
(1)寫出點(diǎn)P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明).
(2)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請(qǐng)確定點(diǎn)P的位置,使其到三個(gè)居民區(qū)的“L路徑”長度之和最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
(不等式選講題)對(duì)于任意實(shí)數(shù)和不等式恒成立,則實(shí)數(shù)x的取值范圍是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com