分析 (1)根據(jù)向量的加減的幾何意義求出,
(2)根據(jù)向量的垂直和向量的數(shù)量積的關(guān)系即可證明.
解答 解:(1)∵$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,
∴$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow b-\overrightarrow a$.
又∵M(jìn)為BO中點(diǎn),
∴$\overrightarrow{BM}=\frac{1}{4}\overrightarrow{BD}=\frac{1}{4}(\overrightarrow b-\overrightarrow a)$,
∴$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow a+\frac{1}{4}(\overrightarrow b-\overrightarrow a)=\frac{3}{4}\overrightarrow a+\frac{1}{4}\overrightarrow b$.
(2)∵$\overrightarrow{AB}•\overrightarrow{BD}=\overrightarrow a•(\overrightarrow b-\overrightarrow a)=\overrightarrow a•\overrightarrow b-{\overrightarrow a^2}$
又∵AB=1,AD=2,∠BAD=60°,
∴$\overrightarrow a•\overrightarrow b=1×2×cos60°=1$,${\overrightarrow a^2}=|\overrightarrow a{|^2}=1$.
∴$\overrightarrow{AB}•\overrightarrow{BD}=\overrightarrow a•\overrightarrow b-{\overrightarrow a^2}=1-1=0$.
即$\overrightarrow{AB}⊥\overrightarrow{BD}$.
點(diǎn)評 本題考查了向量的加減的幾何意義和向量的數(shù)量積公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{5}$-1 | B. | 3$\sqrt{5}$-2 | C. | 3($\sqrt{5}$-1) | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com