1.下列函數(shù)在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A.f(x)=3-xB.f(x)=$\frac{1}{x-1}$C.f(x)=x2-2x-1D.f(x)=-|x|

分析 A中根據(jù)一次函數(shù)的性質(zhì)可判斷;
B中根據(jù)反比例函數(shù)的圖象和平移可判斷;
C中根據(jù)二次函數(shù)的性質(zhì)可判斷;
D中根據(jù)絕對值的性質(zhì)可判斷.

解答 解:A中為一次函數(shù),一次項系數(shù)為負值,故遞減,故A錯誤;
B中為反比例函數(shù)右移一個單位,故在(-∞,0)為減函數(shù),故B錯誤;
C中f(x)=x2-2x-1=(x-1)2-2,故在(-∞,0)為減函數(shù),故C錯誤;
D中當(dāng)x<0是,f(x)=x,故為增函數(shù).
故選:D.

點評 考查了一次函數(shù),反比例函數(shù),二次函數(shù)和絕對值函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cost}\\{y=5+5sint}\end{array}\right.$(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系得曲線C2的極坐標方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)將曲線C1向右移動1個單位得到曲線C3,求C3與C2交點的極坐標(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB將三角形PAB折起,使∠PAD=120°,構(gòu)成四棱錐P-ABCD,構(gòu)成四棱錐P-ABCD(如圖2),且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2
(1)求證:平面BEF⊥平面PAB;
(2)求平面PBC與平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2=$\frac{12}{{3+{{sin}^2}θ}}$,直線l與曲線C交于A,B兩點.
(1)求曲線C的直角坐標方程;
(2)求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.拋物線的頂點在原點,對稱軸是坐標軸,且它過點P(-2,2$\sqrt{2}$),則拋物線的方程是y2=2x或x2=$\sqrt{2}$y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}是等差數(shù)列,且a5=$\frac{π}{2}$,若函數(shù)f(x)=sin2x+2cos2$\frac{x}{2}$,記yn=f(an),則數(shù)列{yn}的前9項和為( 。
A.0B.9C.-9D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$).
(1)求f(x)的單調(diào)增區(qū)間;
(2)若x0為f(x)的一個零點(0≤x0≤$\frac{π}{2}$),求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠0},滿足f(x)+f(-x)=0,當(dāng)x>0時,f(x)=1nx-x+1,則函數(shù)y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合M={x|x2-3x+2=0},N={x|x2-2x+a=0},若N⊆M,則實數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案