已知函數(shù),用[x]表示不超過x的最大整數(shù),則函數(shù)g(x)=[f(x)]+[f(-x)]的值域?yàn)?/P>

[  ]

A.{0,-2}

B.{1,0,-1}

C.{0,-1}

D.{0}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個(gè)命題:
①若lga+lgb=0(a大于0,b不等于1),則函數(shù)f(x)=ax與g(x)=bx的圖象關(guān)于x軸對(duì)稱.
②已知函數(shù)f(x)=(
12
)x
的反函數(shù)是y=g(x),則g(x)在(0,+∞)上單調(diào)遞增.
③為調(diào)查參加運(yùn)動(dòng)會(huì)的1000名運(yùn)動(dòng)員的年齡分布情況,從中抽查了100名運(yùn)動(dòng)員的檔案進(jìn)行調(diào)查,個(gè)體是被抽取的每個(gè)運(yùn)動(dòng)員;
④用獨(dú)立性檢驗(yàn)(2×2列聯(lián)表)來考察兩個(gè)變量是否具有相關(guān)關(guān)系時(shí),計(jì)算出的隨機(jī)變量K2的觀測(cè)值越大,則說明“X與Y有關(guān)系的可能性越大”.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a

在探究a=1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),解答以下兩個(gè)問題.
(1)寫出函數(shù)f(x)在[0,+∞)(a=1)上的單調(diào)區(qū)間;指出在各個(gè)區(qū)間上的單調(diào)性,并對(duì)其中一個(gè)區(qū)間的單調(diào)性用定義加以證明.
(2)寫出函數(shù)f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請(qǐng)完成以下任務(wù):
(Ⅰ)探究a=1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),解答以下兩個(gè)問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個(gè)區(qū)間上的單調(diào)性,并對(duì)其中一個(gè)區(qū)間的單調(diào)性用定義加以證明.
(2)請(qǐng)回答:當(dāng)x取何值時(shí)f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個(gè)步驟研究a=1時(shí),函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域?yàn)椋?1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長(zhǎng)沙一中高三(下)第九次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出以下五個(gè)命題:
①若lga+lgb=0(a大于0,b不等于1),則函數(shù)f(x)=ax與g(x)=bx的圖象關(guān)于x軸對(duì)稱.
②已知函數(shù)的反函數(shù)是y=g(x),則g(x)在(0,+∞)上單調(diào)遞增.
③為調(diào)查參加運(yùn)動(dòng)會(huì)的1000名運(yùn)動(dòng)員的年齡分布情況,從中抽查了100名運(yùn)動(dòng)員的檔案進(jìn)行調(diào)查,個(gè)體是被抽取的每個(gè)運(yùn)動(dòng)員;
④用獨(dú)立性檢驗(yàn)(2×2列聯(lián)表)來考察兩個(gè)變量是否具有相關(guān)關(guān)系時(shí),計(jì)算出的隨機(jī)變量K2的觀測(cè)值越大,則說明“X與Y有關(guān)系的可能性越大”.
其中正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省綿陽(yáng)市實(shí)驗(yàn)高中高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).請(qǐng)完成以下任務(wù):
(Ⅰ)探究a=1時(shí),函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x0.10.20.50.811.21.51.8246
y0.3960.7691.61.95121.9671.8461.6981.60.9410.649
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),解答以下兩個(gè)問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個(gè)區(qū)間上的單調(diào)性,并對(duì)其中一個(gè)區(qū)間的單調(diào)性用定義加以證明.
(2)請(qǐng)回答:當(dāng)x取何值時(shí)f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個(gè)步驟研究a=1時(shí),函數(shù)的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域?yàn)椋?1,1),解不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案