7.以$2i-\sqrt{5}$的虛部為實(shí)部,以$\sqrt{5}i+2{i^2}$的實(shí)部為虛部的新復(fù)數(shù)是( 。
A.2-2iB.2+iC.-$\sqrt{5}$+$\sqrt{5}i$D.$\sqrt{5}$+$\sqrt{5}$i

分析 利用實(shí)部與虛部的定義即可得出.

解答 解:$2i-\sqrt{5}$的虛部為2,以$\sqrt{5}i+2{i^2}$=-2+$\sqrt{5}$i的實(shí)部為-2,
∴要求的新復(fù)數(shù)是2-2i,
故選:A.

點(diǎn)評(píng) 本題考查了實(shí)部與虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)在實(shí)數(shù)集R上具有下列性質(zhì):
①f(x+2)=-f(x);
②f(x+1)是偶函數(shù);
③當(dāng)x1≠x2∈[1,3]時(shí),(f(x2)-f(x1))•(x2-x1)>0,
則f(2015),f(2016),f(2017)的大小關(guān)系為( 。
A.f(2015)>f(2016)>f(2017)B.f(2016)>f(2015)>f(2017)
C.f(2017)>f(2015)>f(2016)D.f(2017)>f(2016)>f(2015)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖四邊形ABCD為正方形,BG,DE,AF兩兩平行且BG=DE=$\frac{1}{2}$AF=$\frac{1}{2}$AB,又AF垂直底面ABCD.
 (1)求證:CG∥平面ADEF;
(2)記正方形ABCD的中心為O,AD,CD的中點(diǎn)分別為P,Q,求證:GO⊥平面EPQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若a2+b2<c2,且sinC=$\frac{1}{2}$,則∠C=( 。
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)aij(i,j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù),如a42=8.若aij=2016,則i與j的和為(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.把y=sin2x的圖象按向量$\overrightarrow a$經(jīng)過一次平移后得到$y=sin(2x+\frac{π}{3})+2$的圖象,則$\overrightarrow a$為( 。
A.$(\frac{π}{6}\;,2)$B.$(-\frac{π}{6}\;,2)$C.$(-\frac{π}{6}\;,-2)$D.$(\frac{π}{6}\;,-2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若方程$\frac{{x}^{2}}{1-k}$+$\frac{{y}^{2}}{2+k}$=1表示橢圓,則k的取值范圍為$(-2,-\frac{1}{2})$∪$(-\frac{1}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$\overrightarrow{a}$為單位向量,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,兩組向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2個(gè)$\overrightarrow{a}$和2個(gè)$\overrightarrow$排列而成,設(shè)S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,則把所有的可能結(jié)果輸入如圖框圖,則輸出的結(jié)果為( 。
A.A=10,B=4B.A=4,B=10C.A=7,B=4D.A=10,B=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知角α的終邊經(jīng)過點(diǎn)(-1,$\sqrt{3}$),則對函數(shù)f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正確的是( 。
A.f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增
B.方程f(x)=0在[-$\frac{5}{6}π,0}$]上有三個(gè)零點(diǎn)
C.其中一個(gè)對稱中心為$(\frac{11}{12}π,0)$
D.函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x)

查看答案和解析>>

同步練習(xí)冊答案