【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為T(mén)n .
【答案】
(1)解:∵(Sn﹣1)2=anSn(n∈N*),
∴n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn﹣1)Sn(n∈N*).
∴n=1時(shí), ,解得a1= =S1.
n=2時(shí), ,解得S2= .
同理可得:S3=
(2)解:由(1)可得:n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn﹣1)Sn(n∈N*).
化為:Sn= .(*)
猜想Sn= .
n≥2時(shí),代入(*),左邊= ;右邊= = ,
∴左邊=右邊,猜想成立,n=1時(shí)也成立.
∴n≥2時(shí),an=Sn﹣Sn﹣1= ﹣ = ,n=1時(shí)也成立.
∴Sn= ,an=
(3)解:bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*)=(﹣1)n﹣1 =(﹣1)n﹣1 ,
∴n=2k(k∈N*)時(shí),數(shù)列{bn}的前n項(xiàng)和為
Tn= ﹣ + +…+ ﹣
= = ﹣ .
n=2k﹣1(k∈N*)時(shí),數(shù)列{bn}的前n項(xiàng)和為
Tn= ﹣ + +…﹣ +
= = + .
∴Tn= ×
【解析】(1)由(Sn﹣1)2=anSn(n∈N*),分別取n=1,2,3即可得出.(2)由(1)可得:n≥2時(shí),(Sn﹣1)2=(Sn﹣Sn﹣1)Sn(n∈N*).化為:Sn= .猜想Sn= .代入驗(yàn)證即可得出.(3)bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*)=(﹣1)n﹣1 =(﹣1)n﹣1 ,對(duì)n分類(lèi)討論,利用“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當(dāng)θ變化時(shí),mn的最大值是( )
A.2
B.4
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( ).
A. ,“”是“”的必要不充分條件
B. “且為真命題”是“或為真命題” 的必要不充分條件
C. 命題“,使得”的否定是:“”
D. 命題:“”,則是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{ }中,已知,,,則等于( )
A. B. C. D.
【答案】B
【解析】
將數(shù)列的等式關(guān)系兩邊取倒數(shù)是公差為的等差數(shù)列,再根據(jù)等差數(shù)列求和公式得到數(shù)列通項(xiàng),再取倒數(shù)即可得到數(shù)列{}的通項(xiàng).
將等式兩邊取倒數(shù)得到,是公差為的等差數(shù)列,=,根據(jù)等差數(shù)列的通項(xiàng)公式的求法得到,故=.
故答案為:B.
【點(diǎn)睛】
這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法,數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知和的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;還有構(gòu)造新數(shù)列的方法,取倒數(shù),取對(duì)數(shù)的方法等等.
【題型】單選題
【結(jié)束】
9
【題目】在如圖所示的銳角三角形空地中, 欲建一個(gè)面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長(zhǎng)x(單位m)的取值范圍是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是遞增數(shù)列,且對(duì),都有,則實(shí)數(shù)的取值范圍是
A. B. C. D.
【答案】D
【解析】
由{an}是遞增數(shù)列,得到an+1>an,再由“an=n2+λn恒成立”轉(zhuǎn)化為“λ>﹣2n﹣1對(duì)于n∈N*恒成立”求解.
∵{an}是遞增數(shù)列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1對(duì)于n∈N*恒成立.
而﹣2n﹣1在n=1時(shí)取得最大值﹣3,
∴λ>﹣3,
故選:D.
【點(diǎn)睛】
本題主要考查由數(shù)列的單調(diào)性來(lái)構(gòu)造不等式,解決恒成立問(wèn)題.研究數(shù)列單調(diào)性的方法有:比較相鄰兩項(xiàng)間的關(guān)系,將an+1和an做差與0比較,即可得到數(shù)列的單調(diào)性;研究數(shù)列通項(xiàng)即數(shù)列表達(dá)式的單調(diào)性.
【題型】單選題
【結(jié)束】
13
【題目】已知數(shù)列{an}滿(mǎn)足a1=1,且an=an-1+2n1 (n≥2 ),則a20=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需把函數(shù)y=sin(2x+ )的圖象( )
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)求
【答案】(1)an=2n+1,bn=8n-1.(2)
【解析】
(1)設(shè){an}的公差為d,{bn}的公比為q,由題設(shè)條件建立方程組,解方程組得到d和q的值,從而求出an與bn;(2)由Sn=n(n+2),知,由此可求出的值.
(1)設(shè){an}的公差為d,{bn}的公比為q,則d為正數(shù),
an=3+(n-1)d,bn=qn-1,
依題意有,
解得或 (舍去).
故an=3+2(n-1)=2n+1,bn=8n-1.
(2)Sn=3+5+…+(2n+1)=n(n+2).
所以++…+=+++…+
= (1-+-+-+…+-)
= (1+--)
=-.
【點(diǎn)睛】
這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知和的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)f(x)滿(mǎn)足f(x+y)=f(x)·f(y),且f(1)=.
(1)當(dāng)n∈N+,求f(n)的表達(dá)式;
(2)設(shè)an=nf(n),n∈N+,求證:a1+a2+…+an<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有限集,如果A中元素,滿(mǎn)足,就稱(chēng)A為元“創(chuàng)新集”;
(1)若,試寫(xiě)出一個(gè)二元“創(chuàng)新集”A;
(2)若,且是二元“創(chuàng)新集”,求的取值范圍;
(3)若是正整數(shù),求出所有的“創(chuàng)新集”;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當(dāng)x≥0時(shí),f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com