【題目】(導學號:05856306)

在△ABC中,內(nèi)角A,B,C的對邊分別為a,bc,已知,且b=5,acos C=-1.

(Ⅰ)求角A;

(Ⅱ)求△ABC的面積.

【答案】(1) (2)15

【解析】試題分析:(1)先化簡,再根據(jù)正弦定理和余弦定理即可求出A的值;

(2)由余弦定理和b=5,acosC=﹣1,求出c,再根據(jù)三角面積公式即可求出.

試題解析:

(Ⅰ)由正弦定理得,

所以=1-,整理得b2c2a2bc,

所以cos A,又A∈(0,π),所以A.

(Ⅱ)因為acos C=-1,所以由余弦定理得a·=-1,

整理得a2c2=-b2-2b=-35,把b=5,a2c2=-35,代入b2c2a2bc,得

25=-35+5c,解得c=12,

所以SABCbcsin A×5×12×=15.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856261)

某企業(yè)員工500人參加“學雷鋒”志愿活動,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(Ⅰ)下表是年齡的頻率分布表,求正整數(shù)a,b的值;

(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組抽取的員工的人數(shù)分別是多少?

(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=axa0)上一點Pt )到焦點F的距離為2t

(l)求拋物線C的方程;

(2)拋物線上一點A的縱坐標為1,過點Q(3,﹣1)的直線與拋物線C交于M,N兩個不同的點(均與點A不重合),設直線AM,AN的斜率分別為k1,k2,求證:k1×k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知p、q為常數(shù), ),又, , .

1)求pq的值;

2)求數(shù)列的通項公式;

3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一水域上建一個演藝廣場.演藝廣場由看臺Ⅰ,看臺Ⅱ,三角形水域及矩形表演臺四個部分構成(如圖).看臺Ⅰ,看臺Ⅱ是分別以 為直徑的兩個半圓形區(qū)域,且看臺Ⅰ的面積是看臺Ⅱ的面積的3倍;矩形表演臺中, 米;三角形水域的面積為平方米.設.

(Ⅰ)當時,求的長;

(Ⅱ)若表演臺每平方米的造價為萬元,求表演臺的最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856311)[選修4-4:坐標系與參數(shù)方程]

已知曲線C1 (α為參數(shù))與曲線C2ρ=4sin θ(θ為參數(shù)).

(Ⅰ)寫出曲線C1的普通方程和曲線C2的直角坐標方程;

(Ⅱ)求C1C2公共弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856325)已知函數(shù)f(x)=+eln x,直線lykx(k≠0)與函數(shù)f(x)的圖象相切于點A(t,f(t))(f(t)≠0),則(  )

A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的焦點是橢圓的頂點 為橢圓的左焦點且橢圓經(jīng)過點.

1)求橢圓的方程;

2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結并延長交橢圓于點,的面積取得最大值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學準備參加考試,在正式考試之前進行了十次模擬測試,測試成績?nèi)缦拢?/span>

甲:137121,131,120,129119,132,123,125133

乙:110,130,147,127,146,114,126,110,144146

1畫出甲、乙兩人成績的莖葉圖,求出甲同學成績的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學平均成績以及兩位同學成績的中位數(shù)的大小關系的結論;

2規(guī)定成績超過127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數(shù)的分布列和數(shù)學期望.

(注:方差,其中的平均數(shù))

查看答案和解析>>

同步練習冊答案