19.已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6,}.則直線l1與l2的交點(diǎn)位于第一象限的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 本題是一個等可能事件的概率,試驗(yàn)發(fā)生包含的事件數(shù)是36,滿足條件的事件是兩條直線的交點(diǎn)在第一象限,寫出兩條直線的交點(diǎn)坐標(biāo),根據(jù)在第一象限寫出不等式組,解出結(jié)果,根據(jù)a,b之間的關(guān)系寫出滿足條件的事件數(shù),得到結(jié)果.

解答 解:設(shè)事件A為“直線l1與l2的交點(diǎn)位于第一象限”,
由于直線l1與l2有交點(diǎn),則b≠2a.
聯(lián)立方程組$\left\{\begin{array}{l}{ax-by+1=0}\\{x-2y-1=0}\end{array}\right.$
解得x=$\frac{b+2}{b-2a}$,y=$\frac{a+1}{b-2a}$,
∵直線l1與l2的交點(diǎn)位于第一象限,則x=$\frac{b+2}{b-2a}$>0,y=$\frac{a+1}{b-2a}$>0,
解得b>2a.a(chǎn),b∈{1,2,3,4,5,6}的總事件數(shù)為36種.
滿足條件的實(shí)數(shù)對(a,b)有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6)共六種.
∴P(A)=$\frac{6}{36}$=$\frac{1}{6}$
即直線l1與l2的交點(diǎn)位于第一象限的概率為$\frac{1}{6}$.
故選:A.

點(diǎn)評 本題考查等可能事件的概率,考查兩條直線的交點(diǎn)在第一象限的特點(diǎn),本題是一個綜合題,在解題時(shí)注意解析幾何知識點(diǎn)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知an=an2+n,若數(shù)列{an}為遞增數(shù)列,則實(shí)數(shù)a的范圍( 。
A.(0,+∞)B.[0,+∞)C.(-$\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{2}$]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)為R上增函數(shù),且對任意x∈R,都有f[f(x)-3x]=4,則f(log39)=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,$\sqrt{3}$bsinA-acosB-2a=0,則∠B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+2017,x>0}\\{-f(x+2),x≤0}\end{array}\right.$,則f(-2016)=( 。
A.-2018B.-2019C.2019D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2016年,某廠計(jì)劃生產(chǎn)某種產(chǎn)品,已知生產(chǎn)該產(chǎn)品的總成本y(萬元)與總產(chǎn)量x(噸)之間的關(guān)系可表示為y=$\frac{x^2}{10}$-2x+90.
(1)當(dāng)x=40時(shí),求該產(chǎn)品每噸的生產(chǎn)成本;
(2)若該產(chǎn)品每噸的出廠價(jià)為6萬元,求該廠2016年獲得利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(  )
A.56B.36C.54D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x∈N|x>1},B={x|x2<9}則A∩B等于(  )
A.{2}B.{2,3}C.(-3,1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.曲線$y=cosx({0≤x≤\frac{3π}{2}})$與x軸所圍圖形的面積為(  )
A.4B.2C.1D.3

查看答案和解析>>

同步練習(xí)冊答案