求函數(shù)f(x)=
1+x2-x
在R上的單調(diào)性.
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求函數(shù)的定義域,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)t=1+x2-x=(x-
1
2
2+
3
4
,則函數(shù)的單調(diào)遞增區(qū)間為(
1
2
,+∞),根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系可知此時(shí)函數(shù)f(x)單調(diào)遞增,
函數(shù)t=1+x2-x的單調(diào)遞減區(qū)間為(-∞,
1
2
),則此時(shí)函數(shù)f(x)單調(diào)遞減.
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的判斷,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且對(duì)于任意實(shí)數(shù)x都有f(x+4)=f(x),又f(1)=4,那么f[f(7)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)是偶函數(shù),其定義域?yàn)閧x|x≠0},且函數(shù)f(x)在(0,+∞)上是減函數(shù),f(2)=0,則函數(shù)f(x)的零點(diǎn)有( 。
A、唯一一個(gè)B、兩個(gè)
C、至少兩個(gè)D、無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(-390°)=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,AC=8,BC=6,P是△ABC內(nèi)切圓M上的動(dòng)點(diǎn),求以PA,PB,PC為直徑的三個(gè)圓的面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:(m2-4)x<m+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知對(duì)于x的所有實(shí)數(shù)值,函數(shù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負(fù)的,求關(guān)于x的方程
x
a+2
=|a-1|+2的根的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)圖象與函數(shù)h(x)=x+
1
x
+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱
(1)求函數(shù)f(x)的解析式;
(2)g(x)=f(x)+
a
x
,x∈[1,2],求g(x)最小值M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,an=n(an+1-an)(n∈N*),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案