12.已知$0<α<π,sinα•cosα=-\frac{1}{2}$,則$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=4.

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sinα和cosα的值,可得要求式子的值.

解答 解:∵已知$0<α<π,sinα•cosα=-\frac{1}{2}$,sin2α+cos2α=1,∴α為鈍角,
∴sinα=$\frac{\sqrt{2}}{2}$,cosα=-$\frac{\sqrt{2}}{2}$,
則$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=$\frac{1}{\frac{2+\sqrt{2}}{2}}$+$\frac{1}{\frac{2-\sqrt{2}}{2}}$=4,
故答案為:4.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市在“兩會(huì)”召開前,某政協(xié)委員針對(duì)自己提出的“環(huán)保提案”對(duì)某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測(cè)定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為k(k>0).現(xiàn)已知相距36km的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù)a,b,它們連線上任意一點(diǎn)c處的污染指數(shù)y等于兩化工廠對(duì)該處的污染指數(shù)之和.
(1)設(shè)A,C兩處的距離為x,試將y表示為x的函數(shù);
(2)若a=1時(shí),y在x=6處取最小值,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合P={x|x≤a},Q={y|y=sinθ,θ∈R}.若P?Q,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若cos ($\frac{π}{3}$-α)=$\frac{3}{5}$,則cos($\frac{2π}{3}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)P到點(diǎn)F(3,0)的距離比它到直線x=-2的距離大1,則點(diǎn)P滿足的方程為y2=12x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2elnx.(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位?康臅r(shí)間(單位:小時(shí)),如果?繒r(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),依此類推,統(tǒng)計(jì)結(jié)果如表:
?繒r(shí)間 2.5 3.5 4 4.5 5 5.5 6
 輪船數(shù)量 12 12 17 20 15 13 83
(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為a小時(shí),求a的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?縜小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在?吭摬次粫r(shí)必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果關(guān)于x的方程x2+(k+2i)x+3+ki=0有實(shí)根,則( 。
A.k≥4或k≤-4B.$k≥\sqrt{2}$或$k≤-2\sqrt{2}$C.$k=±2\sqrt{3}$D.$k=±2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=x+xlnx,若k(x-2)<f(x)對(duì)任意x>2恒成立,則整數(shù)k的最大值是( 。
A.8B.6C.5D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案