分析 (1)利用切割線定理,結(jié)合BA=BC,證明:△BCM~△BNC;
(2)證明DE⊥BC,可得△DCE為直角三角形,∠DCE=60°,即可求$\frac{DE+CE}{DC}$.
解答 (1)證明:∵BA與圓O相切,切點為A,割線BN與圓O分別交于點M,N,
∴BA2=BM•BN.
∵BA=BC,
∴BC2=BM•BN.
∴$\frac{BC}{BM}$=$\frac{BN}{BC}$,
∴△BCM~△BNC;
(2)解:由(1)可得∠BCD=∠BNC,
∵∠BNC=∠CDE,
∴∠CDE=∠BCD=30°,
∵N,O,D三點共線,
∴DE⊥BC,
∴△DCE為直角三角形,
∴∠DCE=60°,
∴$\frac{DE+CE}{DC}$=$\frac{DCsin60°+DCsin30°}{DC}$=$\frac{\sqrt{3}+1}{2}$.
點評 本題考查切割線定理,考查三角形相似的判定,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
本科生 | 研究生 | 合計 | |
能參加面試 | |||
不能參加面試 | |||
合計 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6,635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
女 | 男 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
A. | 有99%以上的把握認為“喜歡該電視劇與性別無關” | |
B. | 有99%以上的把握認為“喜歡該電視劇與性別有關” | |
C. | 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關” | |
D. | 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆甘肅會寧縣一中高三上學期9月月考數(shù)學(文)試卷(解析版) 題型:解答題
已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若有最大值3,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com