分析 (1)連接BD,由∠CDE=∠BED=90°,DE=BE=1,CD=2,可得BD=$\sqrt{2}$,∠BDE=45°,∠BDC=45°,利用余弦定理可得:BC2=2,利用AC2+BC2=AB2,可得AC⊥BC,利用面面垂直的性質(zhì)定理可得AC⊥平面BCDE.
(2)以D為原點(diǎn),分別以DE,DC為x,y軸的正半軸,與CA平行的直線為z軸,設(shè)平面ADE的法向量為$\overrightarrow{m}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DA}=0}\\{\overrightarrow{m}•\overrightarrow{DE}=0}\end{array}\right.$,可得$\overrightarrow{m}$.設(shè)平面ABD的法向量為$\overrightarrow{n}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DA}=0}\\{\overrightarrow{n}•\overrightarrow{DB}=0}\end{array}\right.$,可得取$\overrightarrow{n}$,利用$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可得出.
解答 (1)證明:連接BD,∵∠CDE=∠BED=90°,DE=BE=1,CD=2,∴BD=$\sqrt{D{E}^{2}+D{B}^{2}}$=$\sqrt{2}$,∠BDE=45°,
∴∠BDC=45°,∴BC2=${2}^{2}+(\sqrt{2})^{2}$-$2×2×\sqrt{2}×cos4{5}^{°}$=2,
∴AC2+BC2=AB2=4,∴AC⊥BC,∵平面ABC⊥平面BCDE,平面ABC∩平面BCDE=BC,∴AC⊥平面BCDE.
(2)解:以D為原點(diǎn),分別以DE,DC為x,y軸的正半軸,與CA平行的直線為z軸,如圖,D(0,0,0),E(1,0,0),A(0,2,$\sqrt{2}$),
B(1,1,0),$\overrightarrow{DA}$=(0,2,$\sqrt{2}$),$\overrightarrow{DB}$=(1,1,0),$\overrightarrow{DE}$=(1,0,0).
設(shè)平面ADE的法向量為$\overrightarrow{m}$=(x1,y1,z1),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DA}=0}\\{\overrightarrow{m}•\overrightarrow{DE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2{y}_{1}+\sqrt{2}{z}_{1}=0}\\{{x}_{1}=0}\end{array}\right.$,取$\overrightarrow{m}$=$(0,1,-\sqrt{2})$.
設(shè)平面ABD的法向量為$\overrightarrow{n}$=(x2,y2,z2),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DA}=0}\\{\overrightarrow{n}•\overrightarrow{DB}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2{y}_{2}+\sqrt{2}{z}_{2}=0}\\{{x}_{2}+{y}_{2}=0}\end{array}\right.$,取$\overrightarrow{n}$=$(1,-1,\sqrt{2})$.
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-3}{2\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$,
由圖可知:二面角B-AD-E的平面角為銳角,
∴二面角B-AD-E的大小為30°.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系空間角、法向量的應(yīng)用、向量垂直與數(shù)量積的關(guān)系、勾股定理與逆定理、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a8 | B. | a9 | C. | a10 | D. | a11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆甘肅會(huì)寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)().
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com