2.如圖是某多面體的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該多面體的體積為(  )
A.32B.$\frac{64}{3}$C.16D.$\frac{32}{3}$

分析 如圖所示,該幾何體為三棱錐A-BCD,其外面圖形為棱長為4的正方體.

解答 解:如圖所示,該幾何體為三棱錐A-BCD,其外面圖形為棱長為4的正方體.
∴該多面體的體積V=$\frac{1}{3}×\frac{1}{2}×{4}^{2}×4$=$\frac{32}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了三棱錐是三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的個(gè)數(shù)是( 。
①總體的個(gè)體數(shù)不多時(shí)宜用簡單隨機(jī)抽樣法;
②系統(tǒng)抽樣在總體均分以后的每一部分進(jìn)行抽樣時(shí),采用的是簡單隨機(jī)抽樣;
③百貨商場的抽獎(jiǎng)活動(dòng)是抽簽法;
④系統(tǒng)抽樣的整個(gè)抽樣過程中,每個(gè)個(gè)體被抽取的概率相等(有剔除時(shí)例外).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2的直線l與橢圓C相交于A、B兩點(diǎn),若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)x>0,y>0,則(x+$\frac{4}{y}$)2+$\frac{y}{x}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用與球心距離為1的平面去截球所得的截面面積為π,則球的表面積為(  )
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)定義在區(qū)間[-k,k]上的函數(shù)f(x)=lg$\frac{1-mx}{1+x}$是奇函數(shù),且f(-$\frac{1}{2}$)≠f($\frac{1}{2}$),若[x]表示不超過x的最大整數(shù),x0是函數(shù)g(x)=lnx+2x+k-6的零點(diǎn),則[x0]=( 。
A.1B.1或2C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知α,β都是銳角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,求cosβ的值.
(2)若cos($\frac{π}{4}$-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)當(dāng)a=b=1時(shí),求函數(shù)f(x)的最大值;
(2)當(dāng)b=1,a≥0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=0,b=-4時(shí),方程2m=$\frac{f(x)}{{x}^{2}}$有唯一實(shí)數(shù)根,求正實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間及最值;
(3)當(dāng)關(guān)于x的方程f(x)=m有四個(gè)不同的解時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案