【題目】設(shè)a>1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為 ,則a=

【答案】4
【解析】解:∵a>1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值分別為loga2a,logaa=1,
它們的差為 ,
,a=4,
所以答案是4
【考點精析】認(rèn)真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲),還要掌握對數(shù)函數(shù)的單調(diào)性與特殊點(過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年袁隆平的超級雜交水稻再創(chuàng)畝產(chǎn)量世界紀(jì)錄,為了測試水稻生長情況,專家選取了甲、乙兩塊地,從這兩塊地中隨機(jī)各抽取株水稻樣本,測量他們的高度,獲得的高度數(shù)據(jù)的莖葉圖如圖所示:

(1)根據(jù)莖葉圖判斷哪塊田的平均高度較高;

(2)計算甲乙兩塊地株高方差;

(3)現(xiàn)從乙地高度不低于的樣本中隨機(jī)抽取兩株,求高度為的樣本被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點為平面直角坐標(biāo)系的原點,極軸為的正半軸,建立平面直角坐標(biāo)系.

(1)若曲線為參數(shù))與曲線相交于兩點,求;

(2)若是曲線上的動點,且點的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有能力互異的3人應(yīng)聘同一公司,他們按照報名順序依次接受面試,經(jīng)理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強(qiáng),就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強(qiáng)的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=(
A.( ,
B.( ,
C.( ,
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求b的值;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2有兩個極值點,則實數(shù)a的取值范圍為(
A.(﹣∞,0)
B.(0,+∞)
C.
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)招聘會的現(xiàn)場,所有應(yīng)聘者的初次面試都由張、王、李三位專家投票決定是否進(jìn)入下一輪測試,張、王、李三位專家都有“通過”、“待定”、“淘汰”三類票各一張,每個應(yīng)聘者面試時,張、王、李三位專家必須且只能投一張票,每人投三類票中的任意一類的概率均為 ,且三人投票相互沒有影響,若投票結(jié)果中至少有兩張“通過”票,則該應(yīng)聘者初次面試獲得“通過”,否則該應(yīng)聘者不能獲得“通過”.
(1)求應(yīng)聘者甲的投票結(jié)果獲得“通過”的概率;
(2)記應(yīng)聘者乙的投票結(jié)果所含“通過”和“待定”票的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于 兩點,且,求直線的傾斜角的值.

查看答案和解析>>

同步練習(xí)冊答案