【題目】已知a∈R,函數(shù).
(I)若函數(shù)處取得極值,求曲線在點處的切線方程;
(Ⅱ)若,函數(shù)上的最小值是的值.
【答案】(Ⅰ) ;(Ⅱ)4.
【解析】
試題分析:(Ⅰ)根據(jù)條件可得,求,再利用導(dǎo)數(shù)的幾何意義,曲線在處切線的斜率就是,這樣根據(jù)切點坐標(biāo)和斜率寫出切線方程;(Ⅱ)先求函數(shù)的導(dǎo)數(shù),并且求函數(shù)的極值點,和,分,,和三種情況討論函數(shù)的單調(diào)性,并且得到函數(shù)的最小值,分別令最小值為,求實數(shù)的值.
試題解析:(Ⅰ),
是函數(shù)的極值點, ,即,解得:,
,,
則,,
所以在點處的切線方程為;
(Ⅱ)由(Ⅰ)知,,
① 當(dāng)時,,,
故不合題意,
② 當(dāng)時,令,則有,或,令,則,
所以在上遞增,在上遞減,在上遞增,
在上的最小值為或,
,,解得:,
③當(dāng)時,令,則有,或,令,則,
在上遞增,在上遞減,在上遞增,
,解得與矛盾.
綜上所述:符合條件的的值為4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集成電路E由3個不同的電子元件組成,現(xiàn)由于元件老化,3個電子元件能正常工作的概率分別降為,,,且每個電子元件能否正常工作相互獨立。若3個電子元件中至少有2個正常工作,則E能正常工作,否則就需要維修,且維修集成電路E所需要費用為100元。
(Ⅰ)求集成電路E需要維修的概率;
(Ⅱ)若某電子設(shè)備共由2個集成電路E組成,設(shè)X為該電子設(shè)備需要維修集成電路所需費用。求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): , , )
A. 24 B. 30 C. 36 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當(dāng)x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災(zāi)區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設(shè)不同的選派方法種數(shù)為N,則下列等式:
①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;
③C135﹣C71C64﹣C65; ④C72C113;
其中能成為N的算式是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個數(shù)是( )
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,圓: 的圓心在橢圓上,點到橢圓的右焦點的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點作互相垂直的兩條直線,且交橢圓于兩點,直線交圓于, 兩點,且為的中點,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com