【題目】在銳角△ABC中,a,b,c分別為角A,B,C的對邊,且4sin2 ﹣cos2A=
(1)求角A的大;
(2)若BC邊上高為1,求△ABC面積的最小值?

【答案】
(1)解:∵A+B+C=π,

∴sin =sin =cos ,

∵4sin2 ﹣cos2A=

∴4cos2 ﹣cos2A=

∴2(1+cosA)﹣(2cos2A﹣1)= ,

整理得(2cosA﹣1)2=0,

∴cosA= ,

∵0<A<π,

∴A=


(2)解:過點A作AD⊥BC,在Rt△ABD,Rt△ACD中,sinB= ,sinC= ,

SABC= bcsinA= × × × = ,

設y=4sinBsinC,

則y=4sinBsin( ﹣B)=2 sinBcosB+2sin2B= sin2B+1﹣cos2B=2sin(2B﹣ )+1,

∵0<B< ,0< ,

<B< , <2B﹣ ,

∴當2B﹣ = ,即B= 時,y有最大值為3,

∴此時S有最小值,為


【解析】(1)利用三角形內角和,轉化B+C,用誘導公式、降冪公式、倍角公式化簡,得到關于cosA的方程,求得cosA,進而求得A.(2)在Rt△ABD,Rt△ACD中,sinB= ,sinC= ,代入三角形面積公式,求得面積的最值,只需化簡求表達式中分母的最值,將C用B表示,利用兩角和公式化簡,利用B的范圍求得分母的最值,進而求得面積的最值.
【考點精析】掌握三角函數(shù)的最值是解答本題的根本,需要知道函數(shù),當時,取得最小值為;當時,取得最大值為,則,,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一個圓柱形乒乓球筒,高為厘米,底面半徑為厘米.球筒的上底和下底分別粘有一個乒乓球,乒乓球與球筒底面及側面均相切(球筒和乒乓球厚度忽略不計).一個平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個橢圓,則該橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:﹣x2+2x﹣m<0對x∈R恒成立;q:x2+mx+1=0有兩個正根.若p∧q為假命題,p∨q為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0≤φ≤ )的圖象與y軸交于點(0,1).

(1)求φ的值.
(2)設P是圖象上的最高點,M、N是圖象與x軸的交點,求tan∠MPN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是雙曲線的左右焦點,以為直徑的圓與雙曲線的一條漸近線交于點,與雙曲線交于點,且均在第一象限,當直線時,雙曲線的離心率為,若函數(shù),則()

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),若,有,則稱函數(shù)為定義在上的非嚴格單增函數(shù);若,有,則稱函數(shù)為定義在上的非嚴格單減函數(shù). .

(1)若函數(shù)為定義在上的非嚴格單增函數(shù),求實數(shù)的取值范圍.

(2)若函數(shù)為定義在上的非嚴格單減函數(shù),試解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓滿足:(1)截軸所得弦長為2;(2)被軸分成兩段圓弧,其弧長的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.

查看答案和解析>>

同步練習冊答案