分析 (1)證明∠BCA=∠DCA,即可證明點A為劣弧$\widehat{BD}$的中點.
(2)證明△ABG∽△ACB,利用AC=6,AB=3,BC=4,即可求BG的長.
解答 (1)證明:∵PA∥BD,∴∠ABD=∠BAP …(2分)
又∵直線PA為圓O的切線,∴∠BAP=∠BCA,∴∠ABD=∠BCA
而∠ABD=∠ACD(同。
∴∠BCA=∠DCA,
∴點A為劣弧BD的中點. …(5分)
(2)解:由(1)知∠ABD=∠BCA,又∵∠BAG為公共角,∴△ABG∽△ACB
∴$\frac{AB}{AC}=\frac{BG}{BC}$,
又∵AC=6,AB=3,BC=4,
∴$\frac{3}{6}$=$\frac{BG}{4}$,∴BG=2 …(10分)
點評 本題考查圓的切線的性質,考查三角形相似的判定與性質,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,+∞) | B. | [4,+∞) | C. | (-∞,4) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{{\sqrt{21}}}$ | B. | $\frac{3}{{\sqrt{21}}}$ | C. | $\frac{4}{{\sqrt{21}}}$ | D. | $\frac{5}{{\sqrt{21}}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -π+arcsin$\frac{\sqrt{2}}{4}$ | B. | -π-arcsin$\frac{\sqrt{2}}{4}$ | C. | -$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$ | D. | -2π+arcsin$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com